Понятие энтальпия энтропия примеры расчетов. Внутренняя энергия, энтальпия, энтропия, потенциал Гиббса

Энтальпи́я, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Определением этой величины служит тождество: H=U+PV

Размерность энтальпии-Дж/моль.

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса :

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Энтропия

а для самопроизвольных

Зависимость изменения энтропии от температуры выражается законом Кирхгофа:

Для изолированной системы изменение энтропии – критерий возможности самопроизвольного протекания процесса. Если , то процесс возможен; если, то в прямом направлении процесс невозможен; если, то в системе равновесие.

Термодинамические потенциалы. Свободная энергия Гиббса и Гельмгольца.

Дл я характеристики процессов, протекающих в закрытых системах, введем новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса G) и изохорно-изотермический потенциал (свободная энергия Гельмгольца F).

Для закрытой системы, в которой осуществляется равновесный процесс при постоянных температуре и объеме, выразим работу данного процесса. Которую обозначим А max (посколько работа процесса, проводимого равновесно, максимальна):

A max =T∆S-∆U

Введем функцию F=U-TS-изохорно-изотермический потенциал, определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях и получим:

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции.

Закрытую систему, находящуюся в изобарно- изотермических условиях, характеризует изобарно-изотермический потенциал G:

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Анализ уравнения ∆G=∆H-T∆S позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH) или энтропийный (ΔS · T).

Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса не зависит от пути процесса, следовательно можно получать разные неизвестные значения энергий Гиббса образования из уравнений, в которых с одной стороны записанны суммы энергий продуктов реакции, а с другой - суммы энергий исходных веществ.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях принимается условие ΔG° < 0, а критерием принципиальной невозможности - условие ΔG° > 0. В то же время, если стандартная энергия Гиббса равна нулю, это не означает, что в реальных условиях (отличных от стандартных) система будет в равновесии.

Условия самопроизвольного протекания процессов в закрытый системах:

Внутреняя энергия (U ) вещества складывается из кинетической и потенциальной энергии всех частиц вещества, кроме кинетической и потенциальной энергии вещества в целом. Внутреняя энергия зависит от природы вещества, его массы, давления, температуры. При химических реакциях разница величин внутренней знергии веществ до и после реакции выливается в тепловой эффект химической реакции. Различают тепловой эффект химической реакции, осуществляемой при постоянном объеме Q v (изохорный тепловой эффект), и тепловой эффект реакции при постоянном давлении Q p (изобарный тепловой эффект).

Тепловой эффект при постоянном давлении, взятый с противоположным знаком называют изменением энтальпии реакции (ΔH = -Q p).

Энтальпия связана с внутренней энергией H = U + pv, где p – давление, а v – объем.

Энтропия (S) – мера беспорядка в системе. Энтропия газа больше, чем энтропия жидкости и твердого тела. Энтропия это логарифм вероятности существования системы (Больцман 1896г): S = R ln W, где R – универсальная газовая постоянная, а W – вероятность существования системы (число микросостояний, которыми может быть осуществлено данное макросостояние). Энтропия измеряется в Дж/мольּK и энтропийных единицах (1э.е. =1Дж/мольּK).

Потенциал Гиббса (G) или изобарно-изотермический потенциал. Эта функция состояния системы получила название движущей силы химической реакции. Потенциал Гиббса связан с энтальпией и энтропией соотношением:

∆G = ∆H – T ∆S , где T температура в K.

6.4 Законы термохимии. Термохимические расчеты.

Закон Гесса (Герман Иванович Гесс 1840): тепловой эффект химической реакции не зависит от пути по которому идет процесс, а зависит от начального и конечного состояния системы.

Закон Лавуазье-Лапласа : тепловой эффект прямой реакции равен тепловому эффекту обратной с противоположным знаком.

Закон Гесса и следствия из него используют для расчетов изменения энтальпии, энтропии, потенциала Гиббса при химических реакциях:

∆H = ∑∆H 0 298 (прод.) - ∑∆H 0 298 (исход.)



∆S = ∑S 0 298 (прод.) - ∑S 0 298 (исход.)

∆G = ∑∆G 0 298 (прод.) - ∑∆G 0 298 (исход.)

Формулировка следствия из закона Гесса для расчета изменения энтальпии реакции: иэменения энтальпии реакции равно сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрии.

∆H 0 298 – стандартная энтальпия образования (количество теплоты, которое выделяется или поглощается при образовании 1 моля вещества из простых веществ при стандартных условиях). Стандартные условия: давление 101,3 кПа и температура 25 0 C.

Принцип Бертло-Томсена : все самопроизвольно протекающие химические реакции идут с уменьшением энтальпии. Этот принцип работает при низких температурах. При высоких температурах могут протекать реакции с увеличением энтальпии.

Разделы См. также «Физический портал »

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определённом постоянном давлении.

Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня площадью S {\displaystyle S} с грузом весом P = p S {\displaystyle P=pS} , уравновешивающего давление газа p {\displaystyle p} внутри сосуда, то такая система называется расширенной .

Энтальпия или энергия расширенной системы E {\displaystyle E} равна сумме внутренней энергии газа U {\displaystyle U} и потенциальной энергии поршня с грузом E p o t = p S x = p V {\displaystyle E_{pot}=pSx=pV}

H = E = U + p V . {\displaystyle H=E=U+pV.}

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V {\displaystyle V} ввести в окружающую среду, имеющую давление p {\displaystyle p} и находящуюся с телом в равновесном состоянии. Энтальпия системы H {\displaystyle H} - аналогично внутренней энергии и другим термодинамическим потенциалам - имеет вполне определённое значение для каждого состояния, то есть является функцией состояния . Следовательно, в процессе изменения состояния

Δ H = H 2 − H 1 . {\displaystyle \Delta H=H_{2}-H_{1}.}

Примеры

Неорганические соединения (при 25 °C)
стандартная энтальпия образования
Хим соединение Фаза (вещества) Химическая формула Δ H f 0 кДж/моль
Аммиак сольватированный NH 3 (NH 4 OH) −80.8
Аммиак газообразный NH 3 −46.1
Карбонат натрия твёрдый Na 2 CO 3 −1131
Хлорид натрия (соль) сольватированный NaCl −407
Хлорид натрия (соль) твёрдый NaCl −411.12
Хлорид натрия (соль) жидкий NaCl −385.92
Хлорид натрия (соль) газообразный NaCl −181.42
Гидроксид натрия сольватированный NaOH −469.6
Гидроксид натрия твёрдый NaOH −426.7
Нитрат натрия сольватированный NaNO 3 −446.2
Нитрат натрия твёрдый NaNO 3 −424.8
Диоксид серы газообразный SO 2 −297
Серная кислота жидкий H 2 SO 4 −814
Диоксид кремния твёрдый SiO 2 −911
Диоксид азота газообразный NO 2 +33
Монооксид азота газообразный NO +90
Вода жидкий H 2 O −286
Вода газообразный H 2 O −241.8
Диоксид углерода газообразный CO 2 −393.5
Водород газообразный H 2 0
Фтор газообразный F 2 0
Хлор газообразный Cl 2 0
Бром жидкий Br 2 0
Бром газообразный Br 2 30.73

Видео по теме

Теплоемкость и ее виды. Удельной теплоемкостью с называют количество теплоты q, которое требуется для изменения температуры единицы количества вещества на один градус:

Различают массовую с, объемную с" и мольную теплоемкости, которые имеют размерность: с, Дж/кг · К; с", Дж/нм 3 · К; , Дж/ моль · К. Эти теплоемкости связаны между собой соотношениями

(1.15)

где ν о, ρ о, μ – удельный объем, плотность и молекулярная масса газа при нормальных условиях (ρ о = 1,013 · 10 5 Па, Т о = 273 К).

Теплоемкость зависит от физической природы рабочего тела, температуры, термодинамического процесса.

В технической термодинамике наиболее часто используют изобарную теплоемкость с р (при р = const) и изохорную с ν (при ν = const).

Связь между этими теплоемкостями определяется соотношением Майера для идеального газа:

с р - с ν = R, (1.16)

где R – газовая постоянная, Дж/кг · К.

Зависимостью теплоемкости от температуры часто пренебрегают, и тогда количество теплоты в изобарном и изохорном процессах находится из выражений

Q p = Мс р (Т 2 – Т 1) или q р = с р (Т 2 – Т 1);

Q ν = Мс ν (Т 2 – Т 1) или q ν = с ν (Т 2 – Т 1).

Из выражения первого закона термодинамики (1.13) и соотношения (1.14) можно получить соотношения для определения изменения внутренней энергии Δu и энтальпии Δh, справедливые для всех термодинамических процессов:

dq ν = du; du = c ν dT; Δu = u 2 – u 1 = c ν (Т 2 – Т 1);

dq р = du + рdν = dh; dh = c p dT; Δh = h 2 – h 1 = c p (Т 2 – Т 1).

Поскольку теплоемкость изменяется с температурой, в зависимости от интервала температур различают истинную с и среднюю с ср теплоемкости. Истинная теплоемкость соответствует бесконечно малому интервалу температур, а средняя - конечному интервалу изменения температуры. Значения теплоемкостей основных газов приводятся в справочниках, учебных пособиях в зависимости от температуры .

Энтальпия. Вводится расчетным путем: полное – H = U + pV или удельное значение h = u + pν, энтальпия представляет некоторую энергию, равную сумме внутренней энергии и произведения давления на объем. Единицей измерения энтальпии Н является джоуль (Дж) или h, Дж/кг. Энтальпия является функцией состояния. Так как в изобарном процессе dH = dQ, то можно сказать, что энтальпия – это количество теплоты, подведенное в изобарном процессе.

Энтропия. Единицей измерения энтропии S является Дж/К и удельной s – Дж/ кг·К. Эта функция состояния вводится расчетным путем и имеет полный дифференциал Количество теплоты в термодинамическом процессе

Если представить термодинамический процесс в T-s диаграмме, то площадь под кривой процесса характеризует количество подведенной или отведенной теплоты.

Энтропию нельзя измерить, но по физическому смыслу она является мерой температурной ценности теплоты, ее способности превращения в работу. Можно сказать также, что энтропия характеризует потерю работы вследствие необратимости реальных процессов (при этом энтропия возрастает).

Обычно при расчете термодинамических процессов определяют не абсолютные значения u, h, s, а изменение в процессе Δu, Δh, Δs.

Первый закон термодинамики для потока рабочего тела

В потоке рабочего тела происходит изменение кинетической энергии рабочего тела и учитывается работа сил внешнего давления dl´. Тогда согласно первому закону термодинамики

(1.19)

Теплота, подведенная к потоку рабочего тела, идет на увеличение его энтальпии и кинетической энергии. Так как по первому закону

,

. (1.20)

Изменение кинетической энергии потока называют его технической работой, т. е. кинетическая энергия потока рабочего тела равна технической (полезной) работе (знак минус указывает на уменьшение объема с ростом давления).

Пример. В тепловом двигателе (паротурбинная установка) поток пара адиабатно расширяется на лопатках турбины (dq = 0):

Второй закон термодинамики

Второй закон термодинамики качественной устанавливает направление перехода теплоты, а также ту ее часть, которую можно перевести в работу в тепловом двигателе. С. Карно (1824 г.) указал на возможность превращения теплоты в полезную работу в двигателях при наличии двух источников теплоты, т. е. необходимым условием для получения работы в тепловом двигателе является разность температур.

Циклы, в которых теплота превращается в работу, называются прямыми, или циклами тепловых двигателей.

На рис. 1.3 и 1.4 изображены прямой цикл в p-v диаграмме и схема теплового двигателя. Рабочее тело 1 (рис. 1.4) в тепловом двигателе 3 получает из горячего источника 2 с температурой Т 1 на участке 1-2 цикла (рис. 1.3) теплоту q 1 (подвод теплоты) и совершает работу l 1 (площадь 1-а-2-3-4-1). Чтобы процесс непрерывно повторялся, в тепловом двигателе нужно возвратить рабочее тело в начальное состояние 1 путем затраты работы l 2 в процессе 2-в-1 (площадь 2-в-1-4-3-2) и отвода теплоты q 2 в холодный источник 4 с температурой Т 2 . В тепловом двигателе часть теплоты (q 1 – q 2) превращена в работу.

Рис. 1.3. Изображение замкнутого термодинамического процесса (цикла)

в р, v – диаграмме

Эффективность прямых обратимых циклов оценивают термическим КПД.

Термический КПД – это отношение работы цикла ко всей подведенной теплоте.

. (1.21)

Термический КПД цикла Карно

Из формулы видно, что не зависит от свойств рабочего тела, а его величина определяется температурами Т 2 и Т 1 холодного и горячего источников теплоты.

Термический КПД цикла Карно имеет максимальное значение, он является эталоном при оценке совершенства любых циклов тепловых двигателей.

Рис. 1.4. Схема теплового двигателя

Диаграммы водяного пара

В современной теплоэнергетике водяной пар является основным рабочим телом.

Термодинамические таблицы водяного пара могут дать лишь дискретные значения искомых величин. Для изображения процессов водяного пара на практике часто используют диаграммы.

Диаграмма T-s водяного пара (рис. 1.5) представляет собой график, построенный в координатах температура-энтропия, на котором нанесены следующие линии: изобары нагрева воды а о а", парообразования а´а´´ и перегрева пара а´´а, верхняя (х = 1) и нижняя (х = 0) пограничные кривые, линии постоянной сухости (х = const). Между пограничными кривыми расположена область влажного пара с различными степенями сухости. Части диаграммы, находящиеся правее х = 1 и левее х = 0, являются соответственно областями перегретого пара и воды. Т-s диаграмма позволяет наглядно оценить изменение температуры водяного пара и теплоту пара в различных процессах. Недостатком использования Т-s диаграммы является необходимость измерения площадей.

Рис. 1.5. Т-s – диаграмма водяного пара

Диаграмма h-s водяного пара (рис. 1.6) строится по значениям энтальпии и энтропии на обеих пограничных кривых области насыщения. Указанные данные определяются по таблицам термодинамических свойств воды и водяного пара.

Начальной точкой для отсчета энтальпии и энтропии является тройная точка. Изобары-изотермы области насыщения представляют собой наклонные прямые линии p = const. При увеличении давления растет температура насыщения и изобары идут более круто. Крутизна изобар-изотерм возрастает вплоть до критических значений, так как наибольшей температурой области насыщения является критическая температура. Параметры критической точки К: t кр = = 374 o C, P кр = 22,1 МПа, v кр = 0,001 м 3 /кг.

После пересечения с верхней пограничной кривой (х = 1) изобары, плавно сопрягаясь с прямолинейными отрезками области насыщения, начинают приобретать выпуклость, направленную вниз, а изотермы круто поворачивают направо, асимптотически стремясь к горизонталям. Последнее объясняется тем, что по мере удаления от области насыщения и падения давления перегретый пар по своим свойствам приближается к идеальному газу, для которого энтальпия является однозначной функцией температуры.

С помощью h, s – диаграммы можно сразу с достаточной для инженерной практики точностью найти числовые значения для шести термодинамических параметров: h, s, v, p, t, x. Остальные необходимые термодинамические величины такие, как работа и теплота, а также изменение внутренней энергии, легко рассчитывают по найденным параметрам.

Диаграмма h-s приведена в приложении.

Рис. 1.6. h-s – диаграмма водяного пара

Тема 1.2. Теплообмен

Теория теплообмена изучает самопроизвольные необратимые процессы переноса теплоты в пространстве с неоднородным полем температуры. Под процессами переноса теплоты в теории теплообмена имеют в виду процесс обмена внутренней энергией между элементами системы в форме теплоты. Внутренняя энергия тел, имеющих более высокую температуру, убывает, а энергия тел с меньшей температурой увеличивается.

Самопроизвольный процесс переноса теплоты в пространстве возникает под действием разности температур и направлен в сторону уменьшения темпе-ратуры. Закономерности переноса теплоты и количественные характеристики этого процесса исследуются в теории теплообмена.

В природе существуют три основных способа переноса теплоты: теплопроводность, конвекция и тепловое излучение.

Теплопроводность – молекулярный перенос теплоты при непосредственном соприкосновении молекул, атомов, ионов, свободных электронов с различными температурами. В чистом виде теплопроводность имеет место в твердых телах и неподвижных слоях жидкости и газа.

Конвекция – процесс переноса теплоты, вещества, количества движения при перемещении в пространстве объемов жидкости или газа из области с одной температурой в область с другой температурой. Конвективный перенос теплоты всегда происходит вместе с теплопроводностью.

Тепловое излучение – процесс распространения теплоты электромагнитными волнами. При этом внутренняя энергия тела (среды) переходит в энергию излучения. Тепловое излучение определяется только температурой и оптическими свойствами излучающего тела.

В природе и технике элементарные процессы распространения теплоты – теплопроводность, конвекция и тепловое излучение очень часто происходят совместно.

Конвективным теплообменом называется процесс совместного переноса теплоты конвекцией и теплопроводностью жидкости или газа.

Конвективная теплоотдача (теплоотдача) – это конвективный тепло-обмен между потоками жидкости или газа и омываемой ими поверхностью.

Тепломассообмен, обусловленный совместным переносом теплоты излучением и теплопроводностью, называют радиационно-кондуктивным . Если перенос теплоты осуществляется дополнительно и конвекцией, то такой процесс называют радиационно-конвективным .

Теплопередача – процесс теплообмена между двумя средами (жидкостью, газами) через разделяющую их поверхность, который осуществляется совмест-ным действием теплопроводности, конвекции и теплового излучения. Парогене-рирующие трубы котельного агрегата, например, получают теплоту от продуктов сгорания топлива в результате радиационно-конвективного теплообмена. Через слой наружного загрязнения, металлическую стенку и слой накипи теплота передается теплопроводностью. От внутренней поверхности трубы к омывающей ее воде теплота переносится теплоотдачей.

Процессы теплообмена могут происходить в различных средах, чистых веществах и разных смесях, при изменении и без изменения агрегатного состояния жидкостей и т. д. В зависимости от этого теплообмен протекает по-разному и описывается различными уравнениями.

Теплопроводность

Теплопроводностью называют молекулярный перенос теплоты микрочастицами, вызванный разностью температур. Процесс теплопроводности наблюдается в чистом виде в твердых телах. Молекулы, атомы, электроны и другие микрочастицы движутся со скоростями, пропорциональными их температуре. За счет взаимодействия друг с другом быстродвижующиеся микрочастицы отдают свою энергию более медленным, передавая таким образом теплоту из зоны с высокой в зону с более низкой температурой.

Втвердых металлических телах теплопроводность происходит вследствие движения свободных электронов.

Внеметаллических твердых телах(в частности, изоляционных материалах), в которых практически отсутствуют свободные электроны, перенос теплоты осуществляется за счет колебаний атомов и молекул.

В газах микроструктурным движением является беспорядочные молекулярные движения, интенсивность которых возрастает с увеличением температур.

В основе теории теплопроводности в твердых телах лежит закон Фурье:

(1.23)

где Q – количество переданной теплоты в единицу времени, Вт;

Градиент температур, К/м;

n – нормаль к изотермической поверхности тела;

F – площадь, перпендикулярная к направлению распространения теплоты, м 2 ;

λ – коэффициент теплопроводности, Вт / (м · К).

Коэффициент теплопроводности λ, характеризующий способность данного вещества проводить теплоту, зависит как от его природы, так и от агрегатного состояния.

Значительное влияние на коэффциент теплопроводности могут оказывать температура, а у пористых материалов еще плотность и влажность.

Значения λ для различных тел в зависимости от температуры приводятся в справочной литературе .

При исследовании процесса теплопроводности в твердых телах пользуются дифференциальным уравнением Фурье-Кирхгофа:

(1.24)

где - коэффициент температуропроводности, м 2 /с.

Коэффициент температуропроводности является физической величиной, характеризующей скорость изменения температуры в данном веществе.

Если температурное поле не зависит от времени, то оно называется стационарным и описывается следующим уравнением:

Это уравнение является исходным при решении задач стационарной теплопроводности. Например, из этого уравнения получают выражение для температурных полей в однослойной стенке:

Здесь R – термическое сопротивление:

В случае плоской стенки

В случае цилиндрической стенки

где δ – толщина плоской стенки;

d 2 , d 1 – внешний и внутренний диаметры цилиндра;

t 1 , t 2 – температура на внутренней и внешней поверхностях тела.

1.2.2. Конвективный теплообмен (теплоотдача)

Общие положения .Конвективный теплообмен представляет собой сложный процесс, при ко­тором теплота передается за счет перемещения объемов жидкости (газа) и одно­временно за счет теплопроводности между неравномерно нагретыми частицами жидкости. Причиной конвективного теплообмена является неравномерность температурного поля внутри жидкой или газообразной среды (теплоносителя). Мате­матический анализ конвективного теплообмена чрезвычайно сложен .

Теплоотдача, характеризующая конвективный теплообмен между потоком
движущейся жидкости (газа) и поверхностью омываемого ею тела, участвует в
работе энергетического оборудования и определяет его эффективность.

Закон Ньютона

Практические расчеты теплоотдачи основываются на законе Ньютона-
Рихмана,
полученном на основании обобщения опытных данных. Согласно этому
закону полный тепловой поток Q,Вт, отдаваемый в процессе теплоотдачи, пропорционален поверхности теплообмена F и разности температур поверхности тела t c и омывающей ее среды t ж (температурному напору):

, (1.26)

где α - коэффициент теплоотдачи, характеризующий интенсивность процесса теплообмена. Размерность α - Вт/(), т. е. это - количество теплоты, которое в единицу времени отдается единицей поверхности тела при разности температур поверхности тела и омывающей среды в один градус.

Разность температур в соотношении (1.26) берут по абсолютной величине с учетом, что теплота распространяется самопроизвольно в сторону убывания тем­пературы.

Величина коэффициента теплоотдачи α сложным образом зависит от мно­гих факторов: природы и режима движения, теплофизических свойств жидкости, температуры, формы и размеров поверхности теплообмена, ее положения в про­странстве и др.

По природе возникновения различают свободное (естественное) и выну­жденное движение жидкости. Вынужденное движение создается внешними ис­точниками (насосом, вентилятором и др.); свободное движение возникает за счет разности плотностей нагретых и холодных слоев жидкости, т. е. под действием архимедовых сил.

Режим движения жидкости имеет решающее значение в процессах тепло­отдачи, так как определяет физический механизм переноса теплоты. Различают два характерных режима движения - ламинарный и турбулентный. При лами­нарном режиме частицы жидкости движутся по упорядоченным траекториям, вид которых определяется формой границ тела. Перенос теплоты осуществляется за счет соприкосновения частиц и слоев жидкости, т. е. за счет ее теплопро­водности. В турбулентном режиме частицы жидкости движутся беспорядочно, по случайным траекториям, быстро меняющимся во времени, перенос теплоты про­исходит в основном за счет интенсивного перемещения частиц жидкости, т. е. за счет конвекции.

Из курса гидрогазодинамики известно, что течение вязкой жидкости вдоль обтекаемой поверхности может быть ламинарным или турбулентным. Затор­моженный слой у твердой поверхности называется пограничным. Внутри лами­нарного слоя теплота переносится вследствие хаотического движения молекул, т. е. теплопроводностью жидкости. В турбулентном пограничном слое поперек не­го перемещаются и переносят теплоту крупные частицы жидкости, интенсивность теплообмена возрастает.

Из многообразия физических свойств жидкости наибольшее влияние на процесс теплоотдачи оказывают следующие параметры: плотность ρ ж, кинемати­ческая вязкость ν ж, коэффициент теплопроводности λ ж, температуропроводность а ж , теплоемкость с ж . Кроме того, коэффициент теплоотдачи зависит от скорости течения, от геометрических размеров, формы и положения тела.

Задача расчета конвективного теплообмена - определение коэффициента
теплоотдачи α.

1.2.2.2. Основы теории подобия

Величина α зависит от рядафакторов, влияющих на сам процесс теплообмена. К ним относятся скорость движения жидкости, физические свойства теплоносителя, гидродинамические характеристики потока, гео­метрическая форма и размеры поверхности теплообмена и др.:

При изучении конвективного теплообмена большую помощь оказывает теория подобия, на основе которой были установлены группы подобных явлений и обобщенные переменные - числа (критерии) подобия, характе­ризующие данную группу явлений. Эти числа подобия составляются из различных физических параметров, и они безразмерны.

– кинематическая вязкость жидкости, м 2 /с;

g – ускорение свободного падения, м/с 2 ;

а – коэффициент температуропроводности жидкости, м 2 /с;

– температурный коэффициент объемного расширения, 1/К (для газов , для жидкостей значения берутся из справочной литературы);

w – скорость потока жидкости, м/с.

В зависимости от геометрической формы поверхности теплообмена в качестве определяющего размера l выбирают следующие параметры:

Для труб и шаров определяющим линейным размером является
диаметр d;

Для вертикальных труб большого диаметра и пластин - высота Н;

для горизонтальных плит – наименьший размер плиты(если греющая сторона плиты обращена вверх, то значение коэффициента α не­обходимо увеличить на 30 % по сравнению с приведенным, если греющая сторона обращена вниз, то значение следует уменьшить на 30 %).

Так как входящие в числа подобия физические величи­ны зависят от температуры, значения этих чисел рассчитываются при тем­пературе, называемой далее определяющей.

Классификация задач по условиям конвективного теплообмена по­зволила выделить два основных вида конвективного теплообмена:

▪ теплообмен без изменения агрегатного состояния (вынужденная конвекция и свободная конвекция) жидкости;

▪ теплообмен при изменении агрегатного состояния(кипение и конденсация) жидкости.

В свою очередь, каждый из этих видов конвективного теплообмена (кипение, конденсация, вынужденная и свободная конвекции) имеют свои разновидности.

Для примера, можно показать порядок величины, α, Вт/(м 2 ·К) для различных условий конвективного теплообмена:

В общем случае коэффициент теплоотдачи определяется как

При решении задач на конвективный теплообмен критерий Нуссельта чаще всего дается в критериальной форме в виде

где показатели степеней n 1 , n 2 , n 3 и множитель пропорциональности Абы­ли найдены путем обработки экспериментальных данных.

При протекании химических реакций происходит перестройка энергетических уровней. Разрушаются одни связи в молекулах и образуются другие. Все это требует определенных энергетических затрат. Превращение одних видов энергии и работы в другие, а также направление и пределы самопроизвольного протекания химических процессов изучает химическая термодинамика. Объектом изучения химической термодинамики является система.

Система - это совокупность взаимодействующих веществ, мысленно или фактически обособленная от окружающей среды (пробирка, автоклав).

Системы бывают: гомогенные - состоящие из одной фазы (однородный раствор поваренной соли) и гетерогенные - состоящие из нескольких фаз (вода со льдом).

Фаза - часть системы, однородная по составу и свойствам и отделенная от других частей системы поверхностью раздела.

В химической термодинамике рассматриваются системы: изолированные - не обменивающиеся с окружающей средой веществом и энергией; закрытые - обменивающиеся энергией с окружающей средой и не обменивающиеся веществом. Существуют открытые системы, которые обмениваются веществом и энергией с окружающей средой, это живые организмы. Но они не рассматриваются в химической термодинамике.

Состояние системы можно охарактеризовать термодинамическими параметрами, к которым относятся: температура, давление, концентрация, плотность, объем, масса.

Если состояние системы характеризуется постоянными и неизменными во времени значениями термодинамических параметров во всех точках системы, то она находится в состоянии равновесия. При изменении одного из параметров состояния система переходит в состояние нового равновесия. Химическая термодинамика рассматривает переходы из одного состояния в другое, при этом могут изменяться или оставаться постоянными некоторые параметры:

изобарические - при постоянном давлении;

изохорические - при постоянном объеме;

изотермические - при постоянной температуре;

изобарно - изотермические - при постоянном давлении и температуре и т.д.

Термодинамические свойства системы можно выразить с помощью нескольких функций состояния системы, называемых характеристическими функциями: внутренней энергии U, энтальпии H, энтропии S, энергии Гиббса G, энергии Гельмгольца F. Характеристические функции обладают одной особенностью: они не зависят от способа (пути) достижения данного состояния системы. Их значение определяется параметрами системы (давлением, температурой и др.) и зависит от количества или массы вещества, поэтому принято относить их к одному молю вещества.

Энтальпия и энтропия

Теплота реакции ДН и изменение свободной энергии ДG не всегда имеют сравнимые значения. В действительности известны реакции, протекающие спонтанно (ДG < 0) несмотря на то, что являются эндотермическими (ДЗ > 0). Это происходит потому, что на прохождение реакции оказывает влияние изменение степени упорядоченности системы. Мерой изменения упорядоченности системы служит изменение энтропии ДS.

Энтропия системы тем выше, чем больше степень неупорядоченности (беспорядка) системы. Таким образом, если процесс идет в направлении увеличения неупорядоченности системы (а повседневный опыт показывает, что это наиболее вероятный процесс), ДS - величина положительная. Для увеличения степени порядка в системе (ДS > 0) необходимо затратить энергию. Оба этих положения вытекают из фундаментального закона природы - второго закона термодинамики. Количественно зависимость между изменениями энтальпии, энтропии и свободной энергии описывается уравнением Гиббса-Гельмгольца:

ДG = ДH - T * ДS

Поясним зависимость этих трех величин на двух примерах.

Взрыв гремучей смеси (1) - это взаимодействие двух газов - кислорода и водорода - с образованием воды. Как и многие окислительно-восстановительные реакции это сильно экзотермический процесс (т.е. ДН<<0). В то же время в результате реакции возрастает степень упорядоченности системы. Газ с его хаотически мигрирующими молекулами перешел в более упорядоченное состояние - жидкую фазу, при этом число молекул в системе уменьшилось на 1/3. В результате увеличения степени упорядоченности (ДS<0) член уравнения - T · ДS - величина положительная, однако это с избытком компенсируется ростом энтальпии: в итоге происходит высоко экзергоническая реакция (ДG <<0).

При растворении в воде поваренной соли (2) ДН - величина положительная, температура в сосуде с раствором, т.е. в объеме раствора, снижается. Тем не менее процесс идет спонтанно, поскольку степень упорядоченности системы уменьшается. В исходном состоянии ионы Na+ и Сl - занимали фиксированные положения в кристаллической решетке. В растворе они перемещаются независимо друг от друга в произвольных направлениях. Снижение упорядоченности (ДS>0) означает, что член уравнения - T · ДS имеет знак минус. Это компенсирует ДН и в целом ДG - величина отрицательная. Подобные процессы принято называть энтропийными.

Энергия Гиббса. Энергия Гельмгольца. Направленность химических реакций

Если процесс протекает самопроизвольно, то внутренняя энергия (энтальпия) должны уменьшаться, а энтропия увеличиваться. Для сравнения этих величин их надо выразить в одних единицах, а для этого ДS умножить на T. В этом случае имеем ДН - энтальпийный фактор и ТДS - энтропийный фактор.

В ходе реакции частицы стремятся к объединению, что ведет к уменьшению энтальпии (ДН < 0), с другой стороны - должна возрастать энтропия, т.е. увеличиваться число частиц в системе (ТДS > 0). «Движущая сила» реакции определяется разностью между этими величинами и обозначается ДG.

ДGp,T = ДH - TДS

и называется изменением энергии Гиббса (изобарно-изотермический потенциал).

Энергия Гиббса - это часть энергетического эффекта реакции, которую можно превратить в работу, поэтому ее называют свободной энергией. Это тоже термодинамическая функция состояния и, следовательно, для реакции

bB + dD =lL + mM

энергию Гиббса химической реакции можно рассчитать как сумму энергий Гиббса образования продуктов реакции за вычетом энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов по формуле:

ДG = lДfGL + mДfGM - dДfGD - bДfGB

где ДfG - энергия Гиббса образования веществ.

Энергия Гиббса образования веществ это изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых при 298 К.

Энергия Гиббса образования простых веществ ДfG принимается равной нулю. Если образующееся вещество и исходные простые вещества находятся в стандартных состояниях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества ДfG0. Ее значения приводятся в справочниках.

Полученное значение ДG является критерием самопроизвольного течения реакции в прямом направлении, если ДG < 0. Химическая реакция не может протекать самопроизвольно в прямом направлении, если энергия Гиббса системы возрастает, т.е. ДG > 0. Если ДG = 0, то реакция может протекать как в прямом, так и в обратном направлениях, т.е. реакция обратима.

Направление химических реакций зависит от их характера. Так, условие ДG < 0 соблюдается при любой температуре для экзотермических реакций (ДН < 0), у которых в ходе реакции возрастает число молей газообразных веществ, и, следовательно, энтропия (ДS > 0). У таких реакций обе движущие силы (ДН) и (ТДS) направлены в сторону протекания прямой реакции и ДG < 0 при любых температурах. Такие реакции являются необратимыми.

Наоборот, эндотермическая реакция (ДН > 0), в результате которой уменьшается число молей газообразных веществ (ДS < 0) не могут протекать самопроизвольно в прямом направлении при любой температуре, т.к. всегда ДG > 0.

Если в результате экзотермической реакции (ДН < 0) уменьшается число молей газообразных веществ и, соответственно, энтропия (ДS < 0), то при невысокой температуре ДН > TДS и реакция возможна в прямом направлении (ДG < 0). При высоких температурах ДH < TДS и прямая реакция самопроизвольно протекать не может (ДG > 0), а обратная реакция возможна.

Для определения температуры равновесия можно воспользоваться условием:

где Тр - температура, при которой устанавливается равновесие, т.е. возможность протекания прямой и обратной реакций.

Если в результате эндотермической реакции (ДН > 0) увеличивается число молей газообразных веществ и энтропия системы (ДS > 0), то при невысоких температурах, когда ДН > ТДS, самопроизвольно прямая реакция идти не может (ДG > 0), а при высоких температурах, когда ДН < TДS, прямая реакция может протекать самопроизвольно (ДG < 0).

Связь между ДG и ДG0 выражается уравнением изотермы Вант-Гоффа, которая для реакции

bB + dD = lL + mM

В изохорно-изотермических условиях свободная энергия называется энергией Гельмгольца или изохорно-изотермическим потенциалом и равна Она характеризует направление и предел самопроизвольного течения химической реакции при изохорно-изотермических условиях, которое возможно при ДF < 0.

Термодинамические потенциалы, функции параметров состояния макроскопической системы (т-ры Т, давления р, объема V, энтропии S, чисел молей компонентов ni, хим. потенциалов компонентов m, и др.), применяемые гл. обр. для описания термодинамического равновесия. Каждому термодинамическому потенциалу соответствует набор параметров состояния, наз. естественными переменными.

Важнейшие термодинамические потенциалы: внутренняя энергия U (естественные переменные S, V, ni); энтальпия Н= U - (- pV) (естественные переменные S, p, ni); энергия Гельмгольца (свободная энергия Гельмгольца, ф-ция Гельмгольца) F = = U - TS (естественные переменные V, Т, ni); энергия Гиббса (своб. энергия Гиббса, ф-ция Гиббса) G=U - - TS - (- pV) (естественные переменные p, Т, ni); большой термодинамич. потенциал (естественные переменные V, Т, mi) Термодинамические потенциалы могут быть представлены общей формулой

где Lk - интенсивные параметры, не зависящие от массы системы (таковы Т, p, mi), Xk-экстенсивные параметры, пропорциональные массе системы (V, S, ni). Индекс l = 0 для внутренней энергии U, 1-для H и F, 2-для G и W. Термодинамические потенциалы являются ф-циями состояния термодинамической системы, т.е. их изменение в любом процессе перехода между двумя состояниями определяется лишь начальным и конечным состояниями и не зависит от пути перехода. Полные дифференциалы термодинамических потенциалов имеют вид:

Ур-ние (2) наз. фундаментальным ур-нием Гиббса в энергетич. выражении. Все термодинамические потенциалы имеют размерность энергии.

Условия равновесия термодинамич. системы формулируются как равенство нулю полных дифференциалов термодинамических потенциалов при постоянстве соответствующих естественных переменных:

термодинамический энтальпия реакция энтропия

Термодинамич. устойчивость системы выражается неравенствами:

Термодинамические потенциалы, взятые как ф-ции своих естественных переменных, являются характеристическими ф-циями системы. Это означает, что любое термодинамич. св-во (сжимаемость, теплоемкость и т.п.) м. б. выражено соотношением, включающим только данный термодинамический потенциал, его естественные переменные и производные термодинамических потенциалов разных порядков по естественным переменным. В частности, с помощью термодинамических потенциалов можно получить уравнения состояния системы.

Важными св-вами обладают производные термодинамических потенциалов. Первые частные производные по естественным экстенсивным переменным равны интенсивным переменным, напр.:

[в общем виде: (9Yl/9Хi) = Li]. И наоборот, производные по естественным интенсивным переменным равны экстенсивным переменным, напр.:

[в общем виде: (9Yl/9Li) = Xi]. Вторые частные производные по естественным переменным определяют мех. и тер-мич. св-ва системы, напр.:

Т.к. дифференциалы термодинамических потенциалов являются полными, перекрестные вторые частные производные термодинамических потенциалов равны, напр. для G (T, p, ni):

Соотношения этого типа называются соотношениями Максвелла.

Термодинамические потенциалы можно представить и как ф-ции переменных, отличных от естественных, напр. G (T, V, ni), однако в этом случае св-ва термодинамических потенциалов как характеристич. ф-ции будут потеряны. Помимо термодинамических потенциалов характеристич. ф-циями являются энтропия S (естественные переменные U, V, ni), ф-ция Массье Ф1 = (естественные переменные 1/Т, V, ni), ф-ция Планка(естественные переменные 1/Т, p/Т, ni). Термодинамические потенциалы связаны между собой ур-ниями Гиббса-Гельмгольца. Напр., для H и G

В общем виде

Термодинамические потенциалы являются однородными ф-циями первой степени своих естественных экстенсивных переменных. Напр., с ростом энтропии S или числа молей ni пропорционально увеличивается и энтальпия Н. Согласно теореме Эйлера, однородность термодинамических потенциалов приводит к соотношениям типа:

В статистической термодинамике пользуются аналогами энергии Гельмгольца и большого термодинамич. потенциала, к-рым отвечают соответственно канонич. и макроканонич. распределения Гиббса. Это позволяет рассчитывать термодинамические потенциалы для модельных систем (идеальный газ, идеальный р-р) по молекулярным постоянным в-ва, характеризующим равновесную ядерную конфигурацию (межъядерные расстояния, валентные и торсионные углы, частоты колебаний и т.п.), к-рые м. б. получены из спектроскопич. и др. данных. Возможен расчет термодинамических потенциалов через сумму по состояниям Z (интеграл по состояниям). Подобный подход позволяет установить связь термодинамических потенциалов с молекулярными постоянными вещества. Вычисление суммы (интеграла) Z для реальных систем - весьма сложная задача, обычно статистические расчеты применяют для определения термодинамических потенциалов идеальных газов.