Гравитационный маневр вокруг солнца. Что такое гравитационный маневр? Из пушки в небеса

Трудно представить, сколько топлива сэкономили космическим аппаратам гравитационные маневры. Они помогают достичь окрестностей планет-гигантов и даже выйти навсегда за пределы Солнечной системы. Даже для исследования относительно близких к нам комет и астероидов можно рассчитать наиболее экономичную траекторию с применением гравитационных маневров. Когда же возникла идея "космической пращи"? И когда она была впервые осуществлена?

Гравитационный маневр как природное явление впервые был обнаружен астрономами прошлого, которые поняли, что значительные изменения орбит комет, их периода (а, следовательно, и их орбитальной скорости) происходят под гравитационным влиянием планет. Так, после перехода короткопериодических комет из пояса Койпера во внутреннюю часть Солнечной системы значительное преобразование их орбит происходит именно под гравитационным влиянием массивных планет, при обмене с ними угловым моментом, без каких-либо энергетических затрат.

Саму идею использовать гравитационные маневры для достижения цели космического полета разработал Майкл Минович в 60-х годах, когда, будучи студентом, он проходил практику в Лаборатории реактивного движения NASA. Впервые идея гравитационного маневра была реализована в траектории полета автоматической межпланетной станции "Ма-ринер-10", когда для достижения Меркурия было использовано гравитационное поле Венеры.

В "чистом" гравитационном маневре правило равенства модуля скоростей до и после сближения с небесным телом сохраняется неукоснительно. Выигрыш становится очевидным, если от планетоцентрических координат перейти к гелиоцентрическим. Это хорошо видно на приведенной здесь схеме, адаптированной из книги В. И. Левантовского "Механика космического полета". Слева показана траектория аппарата, как ее видит наблюдатель на планете Р. Скорость v вх на "местной бесконечности" по модулю равна v вых. Все, что заметит наблюдатель, это изменение направления движения аппарата. Однако наблюдатель, находящийся в гелиоцентрических координатах, увидит значительное изменение скорости аппарата. Поскольку сохраняется только модуль скорости аппарата относительно планеты, а он сравним с модулем орбитальной скорости самой планеты, результирующая векторная сумма скоростей может стать как большей, так и меньшей скорости аппарата перед сближением. Справа показана векторная диаграмма такого обмена угловыми моментами. Через v вх и v вых обозначены равные скорости входа и выхода аппарата относительно планеты, а через V сбл, V удал и V пл - скорости сближения и удаления аппарата и орбитальная скорость планеты в гелиоцентрических координатах. Приращение ΔV - этот тот импульс скорости, который планета сообщила аппарату. Конечно тот момент, который передает планете сам аппарат, пренебрежимо мал.

Таким образом, соответствующим выбором трассы сближения можно не только изменить направление, но и значительно увеличить скорость аппарата без всяких затрат его энергоисточников.

На этой схеме не показано, что вначале скорость резко возрастает, а затем падает до конечной величины. Баллистиков это обычно не заботит, они воспринимают обмен угловыми моментами как "гравитационный удар" со стороны планеты, длительность которого пренебрежимо мала по сравнению с полной длительностью полета.

Критическими в гравитационном маневре оказываются масса планеты М, прицельная дальность d и скорость v вх. Интересно, что приращение скорости ΔV оказывается максимальным, когда v вх равно круговой скорости у поверхности планеты.

Таким образом, наиболее выгодны маневры у планет-гигантов, причем они заметно сокращают длительность полета. Используются также маневры у Земли и Венеры, но это значительно увеличивает длительность космического путешествия.

После успеха экспедиции "Маринера-10" гравитационные маневры применялись во многих космических экспедициях. Например, исключительно успешной была миссия аппаратов "Вояджер", с помощью которых были проведены исследования планет-гигантов и их спутников. Аппараты были запущены в США осенью 1977 года и достигли первой цели миссии, планеты Юпитер, в 1979 году. После выполнения исследовательской программы у Юпитера и исследований его спутников аппараты совершили гравитационный маневр (с использованием поля тяготения Юпитера), что позволило направить их по несколько различающимся траекториям к Сатурну, которого они достигли в 1980 и 1981 годах соответственно. Далее "Вояджер-1" выполнил сложный маневр, чтобы пройти на расстоянии всего лишь 5000 км от спутника Сатурна Титан, а затем оказался на траектории ухода из Солнечной системы.

"Вояджер-2" также проделал еще один гравитационный маневр и, несмотря на некоторые возникшие технические проблемы, был направлен к седьмой планете, Урану, встреча с которым состоялась в начале 1986 года. После сближения с Ураном в его поле был выполнен еще один гравитационный маневр, и "Вояджер-2" направился к Нептуну. Здесь гравитационный маневр позволил аппарату достаточно тесно сблизиться со спутником Нептуна Тритоном.

В 1986 году гравитационный маневр у Венеры дал возможность советским космическим аппаратам "ВЕГА-1" и "ВЕГА-2" встретиться с кометой Галлея.

В самом конце 1995 года Юпитера достиг новый аппарат, "Галилео", трасса полета которого была выбрана как цепь гравитационных маневров в полях тяготения Земли и Венеры. Это позволило аппарату за 6 лет дважды посетить пояс астероидов и сблизиться с довольно крупными телами Гаспрой и Идой, да еще дважды вернуться к Земле. После запуска в США осенью 1989 г. аппарат был направлен к Венере, с которой сблизился в феврале 1990 г., а затем в декабре 1990 г. вернулся к Земле. Снова был выполнен гравитационный маневр, и аппарат ушел к внутренней части пояса астероидов. Чтобы достичь Юпитера, в декабре 1992 г. "Галилео" снова вернулся к Земле и, наконец, лег на курс полета к Юпитеру.

В октябре 1997 года, также в США, к Сатурну был запущен аппарат "Кассини". Программа его полета предусматривает 4 гравитационных маневра: два у Венеры и по одному у Земли и у Юпитера. После первого маневра в сближении с Венерой (в апреле 1998 г.) аппарат ушел к орбите Марса и снова (без участия Марса) возвратился к Венере. Второй маневр у Венеры (июнь 1999 г.) возвратил "Кассини" к Земле, где также был выполнен гравитационный маневр (август 1999 г.). Так аппарат набрал достаточную скорость для быстрого полета к Юпитеру, где в конце декабря 2000 г. будет выполнен его последний маневр на пути к Сатурну. Цели аппарат должен достичь в июле 2004 года.

Л. В.Ксанфомалити, доктор физ.-мат. наук, заведующий лабораторией Института космических исследований.

Если ракета пролетит рядом с планетой, её скорость изменится. Либо уменьшится, либо возрастёт. Это зависит от того, с какой стороны от планеты она пролетит.

Когда американские космические аппараты «Вояджеры» совершали свой знаменитый Гранд тур по внешней Солнечной системе, они выполнили несколько так называемых гравитационных манёвров вблизи планет-гигантов.
Больше всего повезло «Вояджеру-2», который пролетел мимо всех четырёх больших планет. График его скорости см. на рисунке:

Из графика видно, что после каждого сближения с планетой (кроме Нептуна), скорость космического аппарата возрастала на несколько километров в секунду.

На первый взгляд это может показаться странным: объект влетает в гравитационное поле и ускоряется, затем вылетает из поля и тормозится. Скорость прилёта должна равняться скорости вылета. Откуда появляется дополнительная энергия?
Дополнительная энергия появляется потому, что есть третье тело – Солнце. При пролёте рядом с планетой космический аппарат обменивается с ней импульсом и энергией. Если при таком обмене гравитационная энергия планеты в поле Солнца уменьшается, то кинетическая энергия космического аппарата (КА) увеличивается, и наоборот.

Как должен пролететь мимо планеты КА, чтобы его скорость возросла? Ответить на этот вопрос нетрудно. Пусть КА пересечет орбиту планеты прямо перед ней. В этом случае, получив дополнительный импульс в направлении на планету, он передаст ей дополнительный импульс в противоположном направлении, то есть в направлении её движения. В результате планета перейдёт на чуть более высокую орбиту, и её энергия возрастёт. Энергия КА при этом, соответственно, уменьшится. Если же КА пересечёт орбиту позади планеты, то он, чуть-чуть притормозив её движение, переведёт планету на более низкую орбиту. Скорость КА при этом возрастёт.

Конечно, масса КА несоизмерима с массой планеты. Поэтому изменение орбитальных параметров планеты при гравитационном манёвре бесконечно малая величина, не поддающаяся измерению. Тем не менее, энергия планеты изменяется, и мы можем убедиться в этом, проведя гравитационный манёвр и увидев, что скорость КА изменяется. Вот, к примеру, как пролетел «Вояджер-2» вблизи Юпитера 9 июля 1979 года (см. рис.). При подлёте к Юпитеру скорость космического аппарата составляла 10 км/сек. В момент максимального сближения она увеличилась до 28 км/сек. А после того, как «Вояджер-2» вылетел из гравитационного поля газового гиганта, уменьшилась до 20 км/сек. Таким образом, в результате гравитационного манёвра скорость космического аппарата возросла в два раза и стал гиперболической. То есть превысила скорость, необходимую для вылета из Солнечной системы. На орбите Юпитера скорость вылета из Солнечной системы около 18 км/сек.

Из этого примера видно, что Юпитер (или другая планета) может разогнать какое-нибудь тело до гиперболической скорости. А значит, он может «выбросить» это тело из Солнечной системы. Может быть, современные космогонисты правы? Может быть, действительно планеты-гиганты выбросили ледяные глыбы на далёкие окраины Солнечной системы и, таким образом, сформировали кометное облако Оорта.
Прежде чем ответить на этот вопрос, посмотрим, на какие гравитационные манёвры способны планеты?

2. Принципы гравитационного манёвра

Впервые я познакомился с гравитационным манёвром в 9-м классе на краевой олимпиаде по физике. Задача была такая. С Земли стартует ракета со скоростью V (достаточна, чтобы вылететь из поля притяжения). У ракеты есть двигатель с тягой F , который может работать время t . В какой момент времени нужно включить двигатель, чтобы конечная скорость ракеты была максимальная? Сопротивлением воздуха пренебречь.

Сначала мне показалось, что не важно, когда включить двигатель. Ведь вследствие закона сохранения энергии, конечная скорость ракеты должна быть одинаковой в любом случае. Оставалось посчитать конечную скорость ракеты в двух случаях: 1. двигатель включаем в начале, 2. двигатель включаем после вылета из поля притяжения Земли. После чего сравнить результаты и убедиться, что конечная скорость ракеты в обоих случаях одинакова. Но потом я вспомнил, что мощность равна: сила тяги умножить на скорость. Поэтому мощность ракетного двигателя будет максимальна, если включить двигатель сразу на старте, когда скорость ракеты максимальна. Итак, правильный ответ: двигатель включаем сразу же, тогда конечная скорость ракеты будет максимальной.

И хотя я задачу решил правильно, но проблема осталась. Конечная скорость, а, значит, и энергия ракеты ЗАВИСИТ от того, в какой момент времени включить двигатель. Вроде бы явное нарушение закона сохранения энергии. Или нет? В чём тут дело? Энергия должна сохраняться! На все эти вопросы я пытался ответить уже после олимпиады.

Пусть у нас есть ракета массы М с двигателем, который создаёт тягу силой F . Поместим эту ракету в пустое пространство (вдали от звёзд и планет) и включим двигатель. С каким ускорением будет двигаться ракета? Ответ мы знаем из Второго закона Ньютона: ускорение a равно:

a = F/M

Теперь перейдём в другую инерциальную систему отсчёта, в которой ракета движется с большой скоростью, скажем, 100 км/сек. Чему равно ускорение ракеты в этой системе отсчёта?
Ускорение НЕ ЗАВИСИТ от выбора инерциальной системы отсчёта, поэтому оно будет ТЕМ ЖЕ САМЫМ:

a = F/M

Масса ракеты также не изменяется (100 км/сек это ещё не релятивистский случай), поэтому и сила тяги F будет ТОЙ ЖЕ САМОЙ. И, следовательно, мощность ракеты ЗАВИСИТ от её скорости. Ведь мощность равна силе, умноженной на скорость. Получается, что если ракета движется со скоростью 100 км/сек, то мощность её двигателя в 100 раз мощнее, чем ТОЧНО ТАКОГО ЖЕ двигателя, находящегося на ракете, движущейся со скоростью 1 км/сек.

На первый взгляд это может показаться странным и даже парадоксальным. Откуда берётся огромная дополнительная мощность? Энергия ведь должна сохраняться!

Давайте разберёмся в этом вопросе.


Ракета всегда движется на реактивной тяге: она выбрасывает в космос различные газы с высокой скоростью. Для определённости предположим, что скорость выброса газов 10 км/сек. Если ракета движется со скоростью 1 км/сек, то её двигатель разгоняет в основном не ракету, а ракетное топливо. Поэтому мощность двигателя по разгону ракеты не высока. А вот если ракета движется со скоростью 10 км/сек, то выброшенное топливо будет ПОКОИТЬСЯ относительно внешнего наблюдателя, то есть, вся мощность двигателя будет тратится на разгон ракеты. А если ракета движется со скоростью 100 км/сек? В этом случае выброшенное топливо будет двигаться со скоростью 90 км/сек. То есть, скорость топлива УМЕНЬШИТСЯ от 100 до 90 км/сек. И ВСЯ разность кинетической энергии топлива в силу закона сохранения энергии будет передана ракете. Поэтому мощность ракетного двигателя при таких скоростях значительно возрастёт.

Проще говоря, у быстро двигающейся ракеты её топливо обладает огромной кинетической энергией. И из этой энергии черпается дополнительная мощность для разгона ракеты. Теперь осталось сообразить, как это свойство ракеты можно использовать на практике.

3. Практическое применение

Предположим, в недалёком будущем вы собрались лететь на ракете в систему Сатурна на Титан:

чтобы исследовать анаэробные формы жизни.

Долетели до орбиты Юпитера и выяснилось, что скорость ракеты упала почти до нуля. Не рассчитали как следует траекторию полёта или топливо оказалось контрафактным. А может, метеорит попал в топливный отсек, и почти всё топливо было потеряно. Что делать?

У ракеты есть двигатель и остался небольшой запас горючего. Но максимум, на что способен двигатель – увеличить скорость ракеты на 1 км/сек. Этого явно недостаточно, чтобы долететь до Сатурна. И вот пилот предлагает такой вариант.

«Входим в поле притяжения Юпитера и падаем на него. В результате Юпитер разгоняет ракету до огромной скорости – примерно 60 км/сек. Когда ракета разгонится до этой скорости, включаем двигатель. Мощность двигателя при такой скорости возрастёт многократно. Затем вылетаем из поля притяжения Юпитера. В результате такого гравитационного манёвра скорость ракеты возрастает не на 1 км/сек, а значительно больше. И мы сможем долететь до Сатурна».

Но кто-то возражает.

«Да, мощность ракеты вблизи Юпитера возрастёт. Ракета получит дополнительную энергию. Но, вылетая из поля притяжения Юпитера, мы всю эту дополнительную энергию потеряем. Энергия должна остаться в потенциальной яме Юпитера, иначе будет что-то вроде вечного двигателя, а это невозможно. Поэтому пользы от гравитационного манёвра не будет. Только зря время потратим».

Что вы об этом думаете?

Итак, ракета находится недалеко от Юпитера и почти неподвижна относительно него. У ракеты есть двигатель с топливом, которого хватит, чтобы увеличить скорость ракеты только на 1 км/сек. Чтобы повысить КПД двигателя, предлагается совершить гравитационный манёвр: «уронить» ракету на Юпитер. Она будет двигаться в его поле притяжения по параболе (см. фото). И в самой низкой точке траектории (помечена красным крестиком на фото) включить двигатель. Скорость ракеты вблизи Юпитера составит 60 км/сек. После того, как двигатель её дополнительно разгонит, скорость ракеты возрастёт до 61 км/сек. Какая скорость будет у ракеты, когда она вылетит из поля притяжения Юпитера?

Эта задача по силам школьнику старших классов, если, конечно, он хорошо знает физику. Сначала нужно написать формулу для суммы потенциальной и кинетической энергий. Затем вспомнить формулу для потенциальной энергии в поле тяготения шара. Посмотреть в справочнике, чему равна гравитационная постоянная, а также масса Юпитера и его радиус. Используя закон сохранения энергии и произведя алгебраические преобразования, получить общую конечную формулу. И наконец, подставив в формулу все числа и проделав вычисления, получить ответ. Я понимаю, что никому (почти никому) не охота вникать в какие-то формулы, поэтому постараюсь, не напрягая вас никакими уравнениями, объяснить решение этой задачи «на пальцах». Надеюсь, получится!

Если ракета неподвижна, её кинетическая энергия равна нулю. А если ракета движется со скоростью 1 км/сек, то будем считать, что её энергия 1 единица. Соответственно, если ракета движется со скоростью 2 км/сек, то её энергия 4 единицы, если 10 км/сек, то 100 единиц и т.д. Это понятно. Половину задачи мы уже решили.

В точке, помеченной крестиком:

скорость ракеты 60 км/сек, а энергия 3600 единиц. 3600 единиц достаточно, чтобы вылететь из поля притяжения Юпитера. После разгона ракеты её скорость стала 61 км/сек, а энергия, соответственно, 61 в квадрате (берём калькулятор) 3721 единицы. Когда ракета вылетает из поля притяжения Юпитера, она тратит только 3600 единиц. Остаётся 121 единица. Это соответствует скорости (берём корень квадратный) 11 км/сек. Задача решена. Это не приближённый, а ТОЧНЫЙ ответ.

Мы видим, что гравитационный манёвр можно использовать для получения дополнительной энергии. Вместо того, чтобы разогнать ракету до 1 км/сек, её можно разогнать до 11 км/сек (энергия в 121 раз больше, КПД – 12 тысяч процентов!), если рядом будет какое-нибудь массивное тело вроде Юпитера.

За счёт чего мы получили ОГРОМНЫЙ энергетический выигрыш? За счёт того, что оставили израсходованное топливо не в пустом пространстве вблизи ракеты, а в глубокой потенциальной яме, созданной Юпитером. Израсходованное топливо получило большую потенциальную энергию со знаком МИНУС. Поэтому ракета получила большую кинетическую энергию со знаком ПЛЮС.

4. Поворот вектора скорости вблизи планеты

Предположим, мы пролетаем на ракете вблизи Юпитера и хотим увеличить её скорость. Но топлива у нас НЕТ. Скажем так, у нас есть немного топлива, чтобы подкорректировать свой курс. Но его явно недостаточно, чтобы заметно разогнать ракету. Можем ли мы заметно увеличить скорость ракеты, используя гравитационный манёвр?

В самом общем виде эта задача выглядит так. Мы влетаем в поле тяготения Юпитера с какой-то скоростью. Затем вылетаем из поля. Изменится ли наша скорость? И как сильно она может измениться? Давайте решим эту задачу.

С точки зрения наблюдателя, который находится на Юпитере (а точнее, неподвижен относительно его центра масс), наш манёвр выглядит так. Сначала ракета находится на большом расстоянии от Юпитера и движется к нему со скоростью V . Затем, приближаясь к Юпитеру, она разгоняется. Траектория ракеты при этом искривляется и, как известно, в самом общем виде представляет собой гиперболу. Максимальная скорость ракеты будет при минимальном сближении. Здесь главное – не врезаться в Юпитер, а пролететь рядом с ним. После минимального сближения ракета начнёт удаляться от Юпитера, а её скорость будет уменьшаться. Наконец, ракета вылетит из поля притяжения Юпитера. Какая у неё будет скорость? Точно такая же, как и была при влёте. Ракета влетела в гравитационное поле Юпитера со скоростью V и вылетела из него с точно такой же скоростью V . Ничего не изменилось? Нет изменилось. Изменилось НАПРАВЛЕНИЕ скорости. Это важно. Благодаря этому мы можем совершить гравитационный манёвр.

Действительно, для нас ведь важна не скорость ракеты относительно Юпитера, а её скорость относительно Солнца. Это так называемая гелиоцентрическая скорость. С такой скоростью ракета движется по Солнечной системе. Юпитер тоже движется по Солнечной системе. Вектор гелиоцентрической скорости ракеты можно разложить на сумму двух векторов: орбитальная скорость Юпитера (примерно 13 км/сек) и скорость ракеты ОТНОСИТЕЛЬНО Юпитера. Здесь нет ничего сложного! Это обычное правило треугольника для сложения векторов, которое изучают в 7-м классе. И этого правила ДОСТАТОЧНО, чтобы понять суть гравитационного манёвра.

У нас есть четыре скорости. V 1 – это скорость нашей ракеты относительно Солнца ПЕРЕД гравитационным манёвром. U 1 – это скорость ракеты относительно Юпитера ПЕРЕД гравитационным манёвром. U 2 – это скорость ракеты относительно Юпитера ПОСЛЕ гравитационного манёвра. По величине U 1 и U 2 РАВНЫ, но по направлению они РАЗНЫЕ. V 2 – это скорость ракеты относительно Солнца ПОСЛЕ гравитационного манёвра. Чтобы увидеть, как все эти четыре скорости связаны между собой, посмотрим на рисунок:

Зелёная стрелка АО – это скорость движения Юпитера по своей орбите. Красная стрелка АВ – это V 1: скорость нашей ракеты относительно Солнца ПЕРЕД гравитационным манёвром. Жёлтая стрелка ОВ – это скорость нашей ракеты относительно Юпитера ПЕРЕД гравитационным манёвром. Жёлтая стрелка ОС – это скорость ракеты относительно Юпитера ПОСЛЕ гравитационного манёвра. Эта скорость ДОЛЖНА лежать где-то на жёлтой окружности радиуса ОВ. Потому что в своей системе координат Юпитер НЕ МОЖЕТ изменить величину скорости ракеты, а может только повернуть её на некоторый угол (альфа). И наконец, АС – это то, что нам нужно: скорость ракеты V 2 ПОСЛЕ гравитационного манёвра.

Посмотрите, как всё просто. Скорость ракеты ПОСЛЕ гравитационного манёвра АС равна скорости ракеты ДО гравитационного манёвра АВ плюс вектор ВС. А вектор ВС это ИЗМЕНЕНИЕ скорости ракеты в системе отсчёта Юпитера. Потому что ОС – ОВ = ОС + ВО = ВО + ОС = ВС. Чем сильнее повернётся вектор скорости ракеты относительно Юпитера, тем эффективнее будет гравитационный манёвр.

Итак, ракета БЕЗ горючего влетает в поле притяжения Юпитера (или другой планеты). Величина её скорости ДО и ПОСЛЕ манёвра относительно Юпитера НЕ ИЗМЕНЯЕТСЯ. Но из-за поворота вектора скорости относительно Юпитера, скорость ракеты относительно Юпитера всё-таки изменяется. И вектор этого изменения просто прибавляется к вектору скорости ракеты ДО манёвра. Надеюсь, всё понятно объяснил.


Существует еще один способ разогнать объект до скорости, близкой к скорости света, - воспользоваться «эффектом пращи», При отправке космических зондов к другим планетам NASA иногда заставляет их совершить маневр вокруг соседней планеты, чтобы, воспользовавшись «эффектом пращи», дополнительно разогнать аппарат. Так NASA экономит ценное ракетное топливо. Именно таким образом аппарату «Вояджер-2» удалось долететь до Нептуна, орбита которого лежит у самого края Солнечной системы.

Фримен Дайсон, физик из Принстона, выдвинул интересное предложение. Если когда-нибудь в далеком будущем человечеству удастся обнаружить в космосе две нейтронные звезды, обращающиеся вокруг общего центра с большой скоростью, то земной корабль, пролетев совсем рядом с одной из этих звезд, может за счет гравитационного маневра набрать скорость, равную чуть ли не трети скорости света. В результате корабль разогнался бы до околосветовых скоростей за счет гравитации. Теоретически такое может получиться.

Только на самом деле этот способ разогнаться при помощи гравитации не сработает. (Закон сохранения энергии говорит о том, что тележка на американских горках, разгоняясь на спуске и замедляясь на подъеме, оказывается наверху ровно с той же скоростью, что и в самом начале - никакого приращения энергии не происходит. Точно так же, обернувшись вокруг неподвижного Солнца, мы закончим ровно с той же скоростью, с какой начали маневр.) Метод Дайсона с двумя нейтронными звездами в принципе мог бы сработать, но только потому, что нейтронные звезды быстро движутся. Космический аппарат, использующий гравитационный маневр, получает приращение энергии за счет движения планеты или звезды. Если они неподвижны, подобный маневр ничего не даст.

А предложение Дайсона, хотя и может сработать, ничем не поможет сегодняшним земным ученым - ведь для того, чтобы наведаться к быстро вращающимся нейтронным звездам, потребуется для начала построить звездолет.

Из пушки в небеса

Еще один хитроумный способ вывести корабль в космос и разогнать до фантастических скоростей - выстрелить им из рельсовой электромагнитной «пушки», которую описывали в своих произведениях Артур Кларк и другие авторы-фантасты. В настоящее время этот проект всерьез рассматривается как возможная часть противоракетного щита программы «звездных войн».

Способ заключается в том, чтобы вместо ракетного топлива или пороха использовать для разгона ракеты до высоких скоростей энергию электромагнетизма.

В простейшем случае рельсовая пушка представляет собой два параллельных провода или рельса; реактивный снаряд, или ракета, «сидит» на обоих рельсах, образуя U-образную конфигурацию. Еще Майкл Фарадей знал, что на рамку с электрическим током в магнитном поле действует сила. (Вообще говоря, на этом принципе работают все электродвигатели.) Если пропустить через рельсы и снаряд электрический ток силой в миллионы ампер, вокруг всей системы возникнет чрезвычайно мощное магнитное поле, которое, в свою очередь, погонит снаряд по рельсам, разгонит его до громадной скорости и вышвырнет в пространство с оконечности рельсовой системы.

Во время испытаний рельсовые электромагнитные пушки успешно выстреливали металлические объекты с громадными скоростями, разгоняя их на очень короткой дистанции. Что замечательно, в теории обычная рельсовая пушка способна выстреливать металлический снаряд со скоростью 8 км/с; этого достаточно, чтобы вывести его на околоземную орбиту. В принципе весь ракетный флот NASA можно было бы заменить рельсовыми пушками, которые прямо с поверхности Земли выстреливали бы полезный груз на орбиту.

Рельсовая пушка имеет существенные преимущества по отношению к химическим пушкам и ракетам. Когда вы стреляете из ружья, максимальная скорость, с которой расширяющиеся газы способны вытолкнуть пулю из ствола, ограничена скоростью распространения ударной волны. Жюль Берн в классическом романе «С Земли на Луну» выстрелил снаряд с астронавтами к Луне при помощи пороха, но на самом деле несложно подсчитать, что максимальная скорость, которую может придать снаряду пороховой заряд, во много раз меньше скорости, необходимой для полета к Луне. Рельсовая же пушка не использует взрывное расширение газов и потому никак не зависит от скорости распространения ударной волны.

Но у рельсовой пушки свои проблемы. Объекты на ней ускоряются так быстро, что они, как правило, сплющиваются из-за столкновения... с воздухом. Полезный груз оказывается сильно деформированным в процессе «выстрела» из дула рельсовой пушки, потому что когда снаряд врезается в воздух, это все равно как если бы он ударился о кирпичную стенку. Кроме того, при разгоне снаряд испытывает громадное ускорение, которое само по себе способно сильно деформировать груз. Рельсы необходимо регулярно заменять, так как снаряд при движений также деформирует их. Более того, перегрузки в рельсовой пушке смертельны для людей; человеческие кости просто не выдержат подобного ускорения и разрушатся.

Одно из решений состоит в том, чтобы установить рельсовую пушку на Луне. Там, за пределами земной атмосферы, снаряд сможет беспрепятственно разгоняться в вакууме открытого космоса. Но даже на Луне снаряд при разгоне будет испытывать громадные перегрузки, способные повредить и деформировать полезный груз. В определенном смысле рельсовая пушка - антипод лазерного паруса, который набирает скорость постепенно в течение долгого времени. Ограничения рельсовой пушки определяются именно тем, что она на небольшом расстоянии и за небольшое время передает телу громадную энергию.

Рельсовая пушка, способная выстрелить аппарат к ближайшим звездам, стала бы весьма дорогостоящим сооружением. Так, один из проектов предусматривает строительство в открытом космосе рельсовой пушки длиной в две трети расстояния от Земли до Солнца. Эта пушка должна будет накапливать солнечную энергию, а затем разом расходовать ее, разгоняя десятитонную полезную нагрузку до скорости, равной трети скорости света. При этом «снаряд» будет испытывать перегрузку в 5000 g. Разумеется, «пережить» такой пуск смогут только самые выносливые корабли-роботы.


Космический аппарат «Вояджер» - самый далекий от Земли из рукотворных объектов. Он уже 40 лет несется по космосу, давно выполнив свою основную цель, - исследование Юпитера и Сатурна. Фотографии дальних планет Солнечной системы, знаменитая Pale blue dot и «Семейная фотография», золотой диск с информацией о Земле - все это славные страницы истории «Вояджера» и мировой космонавтики. Но сегодня мы не будем петь гимны знаменитому аппарату, а разберем одну из технологий, без которой сорокалетний полет просто не состоялся бы. Встречайте: его величество гравитационный маневр.

Гравитационное взаимодействие, наименее изученное из имеющихся четырех, задает тон всей космонавтике. Одна из главных статей расхода при запуске космического аппарата - затраты на те силы, которые нужны, чтобы преодолеть гравитационное поле Земли. И каждый грамм полезной нагрузки на космическом корабле - это лишнее топливо в ракете. Получается парадокс: чтобы больше брать, нужно больше топлива, которое тоже весит. То есть чтобы увеличить массу, нужно увеличить массу. Конечно, это весьма обобщенная картина. В реальности точные расчеты позволяют брать необходимую нагрузку и по мере необходимости увеличивать ее. Но гравитация, как говорил Шелдон Купер, все еще бессердечная, кхм, стерва.

Как это часто бывает, в любом явлении кроется двойственная природа. Так же в отношениях гравитации и космонавтики. Человеку удалось применить гравитационную тягу планет на пользу своим космическим полетам, и за счет этого «Вояджер» бороздит межзвездное пространство уже сорок лет, не затрачивая топлива.

Неизвестно, кому впервые пришла в голову идея гравитационного маневра. Если порассуждать, то можно дойти до первых астрономов Египта и Вавилона, которые звездными южными ночами наблюдали за тем, как кометы изменяют свою траекторию и скорость, проходя мимо планет.

Первая оформленная идея гравитационного маневра прозвучала из уст Фридриха Артуровича Цандера и Юрия Васильевича Кондратюка в 1920-30-х годах, в эпоху теоретической космонавтики. Юрий Васильевич Кондратюк (настоящее имя - Александр Иванович Шаргей) - выдающийся советский инженер и ученый, который, независимо от Циолковского, сам создал схемы ракеты на кислородно-водородном топливе, предложил использовать атмосферу планеты для торможения, разработал проект спускаемого аппарата для посадки на небесное тело, который впоследствии использовало NASA для лунной миссии. Фридрих Цандер - один из тех людей, которые стояли у истоков отечественной космонавтики. Он состоял, а в некоторые годы и председательствовал, в ГИРДе - Группе Изучения Ракетного Движения, сообществе инженеров-энтузиастов, которые строили первые прототипы ракет на жидком топливе. За полное отсутствие какого-либо материального интереса, ГИРД иногда в шутку расшифровывали как Группа Инженеров, Работающих Даром.

Юрий Васильевич Кондратюк
Источник: wikimedia.org

Между высказанными предложениями Кондратюка с Цандером и практической реализацией гравитационного маневра прошло порядка пятидесяти лет. Точно установить первый аппарат, ускорившийся от гравитации, не представляется возможным - американцы утверждают, что это «Маринер-10» в 1974 году. Мы говорим, что это была «Луна-3» в году 1959. Это вопрос истории, но что же из себя представляет гравитационный маневр?

Суть гравитационного маневра

Представьте себе обычную карусель во дворе обычного дома. Затем мысленно раскрутите её до скорости икс километров в час. Потом возьмите в руку резиновый мячик и киньте в раскрученную карусель со скоростью игрек километров в час. Только берегите голову! И что же мы получим в итоге?

Тут важно понимать, что суммарная скорость будет определяться не абсолютно, а относительно точки наблюдения. С карусели, да и с вашей позиции, мячик отскочит от карусели со скоростью х+у - суммарной для карусели и мячика. Таким образом, карусель передает часть своей кинетической энергии (а точнее говоря, импульса) мячику, тем самым ускоряя его. Причем количество убывшей у карусели энергии равно количеству энергии, переданной мячику. Но за счет того, что карусель большая и чугунная, а мячик маленький и каучуковый, мяч летит с большой скоростью в сторону, а карусель лишь немного замедляет ход.

Теперь перенесем ситуацию на космос. Представьте себе обычный Юпитер в обычной Солнечной системе. Затем мысленно раскрутите его… хотя, стоп, этого делать не надо. Просто представьте Юпитер. Мимо него летит космический аппарат и под действием гиганта изменяет свою траекторию и скорость. Это изменение можно описать в виде гиперболы - скорость сначала возрастает по мере приближения, а затем падает по мере отдаления. С точки зрения потенциального жителя Юпитера, наш космический корабль вернулся к исходной скорости, просто изменив направление. Но мы-то знаем, что планеты вращаются вокруг Солнца, да еще с большой скоростью. Юпитер, например, со скоростью 13 км/с. И когда аппарат пролетает мимо, Юпитер ловит его своей гравитацией и увлекает за собой, выкидывая вперед с большей скоростью, чем была до! Это если пролететь сзади планеты относительно направления ее движения вокруг Солнца. Если пролететь перед ней, то скорость, соответственно, упадет.

Гравитационный маневр. Источник: wikimedia.org

Такая схема напоминает собой метание камней из пращи. Поэтому еще одно название маневра - «гравитационная праща». Чем больше скорость планеты и ее масса, тем сильнее можно разогнаться или притормозить об ее гравитационное поле. Есть еще небольшая хитрость - так называемый эффект Орбета.

Названый в честь Германа Орбета, этот эффект в самых общих чертах можно описать так: реактивный двигатель, движущийся на высокой скорости, совершает больше полезной работы, чем такой же, движущийся медленно. То есть двигатель космического аппарата будет максимально эффективен в самой «низкой» точке траектории, где гравитация будет тянуть его сильнее всего. Включенный в этот момент, он получит от сожженного топлива намного больший импульс, чем получил бы вдали от гравитирующих тел.

Сложив все это в единую картину, мы можем получить очень неплохое ускорение. Юпитер, например, при собственной скорости в 13 км/с может в теории разогнать корабль на 42,7 км/с, Сатурн – на 25 км/с, планеты поменьше, Земля и Венера, - на 7-8 км/с. Тут сразу же включается воображение: а что будет, если запустить теоретический несгораемый аппарат к Солнцу и ускориться от него? Действительно, это возможно, так как Солнце вращается вокруг центра масс. Но давайте мыслить шире - что будет, если пролететь мимо нейтронной звезды, как пролетал герой Макконахи мимо Гаргантюа (черная дыра) в «Интерстеллар»? Будет ускорение примерно в 1/3 скорости света. Так что будь у нас в распоряжении подходящий корабль и нейтронная звезда, то такой катапультой можно было бы запустить корабль в район Проксима Центавра всего за 12 лет. Но это пока только буйная фантазия.

Маневры «Вояджера»

Говоря в начале статьи о том, что мы не будем петь гимны «Вояджеру», я слукавил. Самый быстрый и самый далекий аппарат человечества, еще и празднующий 40 лет в этом году, согласитесь, достоин упоминания.

Сама идея отправиться к дальним планетам стала возможной благодаря гравитационным маневрам. Было бы несправедливо не упомянуть тогда еще аспиранта Калифорнийского университета в Лос-Анджелесе (UCLA) Майкла Миновича, который рассчитал последствия гравитационной пращи и убедил профессоров Лаборатории реактивного движения, что даже на имевшихся в 60-х годах технологиях можно полететь к дальним планетам.

Фотография Юпитера, сделанная “Вояджером”

Импульсы вдоль оси движения влияют на форму и ориентацию* орбиты и не изменяют её наклон.

Гравитационный маневр как природное явление впервые был обнаружен астрономами прошлого, которые поняли, что значительные изменения орбит комет, их периода (а следовательно и их орбитальной скорости) происходят под гравитационным влиянием планет. Так, после перехода короткопериодических комет из пояса Койпера во внутреннюю часть Солнечной системы, значительное преобразование их орбит происходит именно под гравитационным влиянием массивных планет, при обмене с ними угловым моментом, без каких-либо энергетических затрат.

Саму идею использовать гравитационный маневр для целей космического полета разработал Майкл Минович в 60-х годах, когда, будучи студентом, он проходил практику в JPL*. Идея была быстро подхвачена и реализована во многих космических миссиях. Но на первый взгляд, возможность значительно ускорить движение аппарата без затрат энергии кажется странной и требует пояснения.

Часто приходится слышать о "захвате" астероидов и комет полем планет. Строго говоря, захват без потерь энергии невозможен: если какое-то тело приближается к массивной планете, модуль его скорости сначала возрастает по мере приближения, а затем на столько же уменьшается в процессе его удаления. Но тело все же может перейти на орбиту спутника планеты, если при этом происходит его торможение (например, имеется торможение в верхних слоях атмосферы, если сближение достаточно тесное; или если возникает значительное приливное рассеяние энергии; или, наконец, если происходит разрушение тела внутри предела Роша с различными векторами скорости, приобретенными обломками). На стадии формирования Солнечной системы важным фактором было также торможение тела в газо-пылевой туманности. Что же касается космических аппаратов, то только в случае вывода на орбиту спутника используется торможение в верхних слоях атмосферы (aerobraking). В "чистом" гравитационном маневре правило равенства модуля скоростей до и после сближения с планетой сохраняется неукоснительно (что и подсказывала интуиция: с чем пришел, с тем и ушел). В чем же выигрыш?

Выигрыш становится очевидным, если от планетоцентрических перейти к гелиоцентрическим координатам .

Наиболее выгодны маневры у планет-гигантов, причем они заметнo сокращают длительность полета. Используются также маневры у Земли и Венеры, но это значительно увеличивает длительность космического путешествия. Все приведенные в таблице данные относятся к пассивному маневру. Но в некоторых случаях в перицентре облетной гиперболы аппарату, с помощью его двигательной установки, сообщают небольшой реактивный импульс, что дает существенный дополнительный выигрыш.

В полете аппарату часто требуется не ускорение, а замедление . Легко выбрать такую геометрию сближения, когда скорость аппарата в гелиоцентрических координатах упадет. Это зависит от положения векторов скоростей при обмене угловыми моментами. Упрощая задачу, можно сказать, что сближение аппарата с планетой с внутренней стороны ее орбиты приводит к тому, что аппарат отдает планете часть своего углового момента и замедляется; и наоборот, сближение с внешней стороны орбиты приводит к увеличению момента и скорости аппарата. Интересно, что никакими акселерометрами на борту зарегистрировать изменение скорости аппарата в маневрах невозможно, - они постоянно регистрируют состояние невесомости.

Преимущества гравитационного маневра по сравнению с гомановским перелетом к планетам-гигантам получаются настолько большими, что полезную нагрузку аппарата можно увеличить вдвое. Как уже говорилось, время достижения цели при гравитационном маневре у массивных планет-гигантов сокращается очень значительно. Разработка принципов маневра показала, что можно использовать и менее массивные тела (Землю, Венеру и, в особых случаях, даже Луну). Только масса в каком-то смысле разменивается на время полета, что заставляет исследователей ждать 2-3 лишних года. Однако стремление сократить расходы на дорогостоящие космические программы заставляет смириться с такой потерей времени. Теперь выбор трассы полета делается, как правило, многоцелевым, охватывающим несколько планет. В 1986 году гравитационный маневр у Венеры позволил обеспечить встречи советских аппаратов "ВЕГА-1" и "ВЕГА-2" с кометой Галлея.