В чем сущность понятия многомерное пространство. Многомерное пространство

Многомерные пространства - миф или реальность? Большинству из нас, или, возможно, всем нам невозможно представить мир, состоящий из более чем трех пространственных измерений. Правильно ли утверждение, что такой мир не может существовать? Или просто человеческий разум не способен вообразить дополнительные измерения - измерения, которые могут оказаться такими же реальными, как и другие вещи, которые мы не можем увидеть?

Мы достаточно часто слышим что-нибудь вроде «трехмерное пространство», или «многомерное пространство», или «четырехмерное пространство». Возможно, вы знаете, что мы живем в четырехмерном пространстве-времени. Что это означает и почему это интересно, почему математики и не только математики изучают такие пространства?

Илья Щуров - кандидат физико-математических наук, доцент кафедры высшей математики НИУ ВШЭ.

Jason Hise - Physics programmer at Ready at Dawn Studios, 4D geometry enthusiast. Автор анимированных моделей, представленных в данной статье.

ashgrowen - пикабушник, проиллюстрировавший в этой статье построение тессеракта и гиперкуба.

Давайте начнем с простого - начнем с одномерного пространства . Представим себе, что у нас есть город, который расположен вдоль дороги, и в этом городе есть только одна улица. Тогда мы можем каждый дом на этой улице закодировать одним числом - у дома есть номер, и этот номер однозначно определяет, какой дом имеется в виду. Люди, которые живут в таком городе, - можно считать, что они живут в таком одномерном пространстве. Жить в одномерном пространстве довольно скучно, и люди обычно живут не в одномерном пространстве.

Например, если мы говорим про города, то можно перейти от одномерного пространства к двумерному. Примером двумерного пространства является плоскость, а если мы продолжим нашу аналогию с городами, то это город, в котором можно расчертить улицы, допустим, перпендикулярно друг другу, как это сделано в Нью-Йорке, в центре Нью-Йорка. Там есть «стрит» и авеню, каждая из которых имеет свой номер, и вы можете задавать местоположение на плоскости, задавать два числа. Опять же, все мы знаем декартову систему координат, знакомую со школы, - каждая точка задается двумя числами. Это пример двумерного пространства .

Но если мы говорим про город типа центра Нью-Йорка, то на самом деле он является трехмерным пространством, потому что вам мало задать, например, конкретный дом, пусть даже вы зададите его пересечением какой-нибудь «стрит» и какой-нибудь авеню, - вам нужно будет задать еще и этаж, на котором находится нужная вам квартира. Это даст вам третье измерение - высоту. У вас получится трехмерное пространство , в котором каждая точка задается тремя числами.

Вопрос: что такое четырехмерное пространство ? Представить его себе не так-то просто, но можно думать о том, что это пространство, в котором каждая точка задается четырьмя числами. На самом деле мы с вами действительно живем в четырехмерном пространстве-времени, потому что события нашей жизни кодируются как раз четырьмя числами - помимо положения в пространстве, есть еще и время. Например, если вы назначаете свидание, то вы можете сделать это так: вы можете указать три числа, которые будут соответствовать точке в пространстве, и обязательно указать время, которое обычно задается в часах, минутах, секундах, но можно было бы закодировать его одним числом. Например, количество секунд, прошедших с определенной даты, - это тоже одно число. Таким образом получается четырехмерное пространство-время.

Представить себе геометрию этого четырехмерного пространства-времени не очень просто. Например, мы с вами привыкли к тому, что в нашем обычном трехмерном пространстве две плоскости могут пересекаться по прямой либо быть параллельными. Но не бывает такого, чтобы две плоскости пересекались в одной точке. Две прямые могут пересечься в одной точке, а на плоскости не могут в трехмерном пространстве. А в четырехмерном пространстве две плоскости могут и чаще всего пересекаются в одной точке. Можно представлять себе, хотя это уже совсем сложно, пространство большей размерности. На самом деле математики, когда работают с пространствами высокой размерности, чаще всего говорят просто: допустим, пятимерное пространство - это пространство, в котором точка задается пятью числами, пятью координатами. Безусловно, математики разработали разные методы, которые позволяют понимать что-то о геометрии такого пространства.

Почему это важно? Зачем понадобились такие пространства? Во-первых, четырехмерное пространство нам важно, потому что оно применяется в физике, потому что мы в нем живем. А зачем нужны пространства более высоких измерений? Давайте представим себе, что мы изучаем какие-то объекты, которые обладают большим количеством параметров. Например, мы изучаем страны, и у каждой страны есть территория, количество населения, внутренний валовой продукт, количество городов, какие-нибудь коэффициенты, индексы, что-нибудь такое. Мы можем представлять себе каждую страну в виде одной точки в каком-то пространстве достаточно высокой размерности. И оказывается, что с математической точки зрения это правильный способ об этом думать.

В частности, переход к геометрии многомерного пространства позволяет анализировать разные сложные объекты, обладающие большим количеством параметров.


Для того чтобы изучать такие объекты, используются методы, разработанные в науке, которая называется линейная алгебра. Несмотря на то, что она алгебра, на самом деле это наука о геометрии многомерных пространств. Конечно, поскольку представить их себе довольно тяжело, математики используют формулы, для того чтобы как раз изучать такие пространства.

Представить себе четырех-, пяти- или шестимерное пространство довольно сложно, но математики не боятся трудностей, и им мало даже стомерных пространств. Математики придумали бесконечномерное пространство - пространство, содержащее бесконечное количество измерений. В качестве примера такого пространства можно привести пространство всех возможных функций, заданных на отрезке или прямой.

Оказывается, что методы, которые были разработаны для конечномерных пространств, во многом переносятся и на случаи чрезвычайно сложных с точки зрения просто попытки их все представить пространств.

У линейной алгебры есть многочисленные приложения не только в математике, но и в самых разных науках, начиная c физики и заканчивая, например, экономикой или политической наукой. В частности, линейная алгебра является основой для многомерной статистики, которая как раз используется для вычленения связей между различными параметрами в каких-то массивах данных. В частности, популярный ныне термин Big Data зачастую связывается с решением задач по обработке данных, которые представляются именно большим количеством точек в пространстве какой-то конечной размерности. Чаще всего такие задачи можно переформулировать и разумно воспринимать именно в геометрических терминах.

Со школьных лет математика разделяется на алгебру и геометрию. Но на самом деле, если мы задумаемся о том, как устроена современная математика, то мы поймем, что те задачи, которые сейчас решаются, в частности, с применением методов линейной алгебры, на самом деле являются очень отдаленным продолжением тех задач, над которыми задумывались многие тысячи лет назад, например Пифагор или Евклид , разрабатывая ту самую школьную геометрию, которая сейчас есть в любом школьном учебнике. Удивительно, что задача по анализу больших данных оказывается в некотором смысле потомком, казалось бы, совсем бессмысленных - по крайней мере с практической точки зрения - упражнений древних греков по рисованию прямых или окружностей на плоскости или мысленному проведению прямых или плоскостей в трехмерном пространстве.

Что такое четырёхмерное пространство («4D»)?

Тессерракт - четырехмерный куб

Всем знакомо сокращение 3D , означающее «трёхмерный» (буква D - от слова dimension - измерение ). Например, выбирая в кинотеатре фильм с пометкой 3D, мы точно знаем: для просмотра придётся надеть специальные очки, но зато картинка будет не плоской, а объёмной. А что такое 4D? Существует ли «четырёхмерное пространство» в реальности? И можно ли выйти в «четвёртое измерение» ?

Чтобы ответить на эти вопросы, начнём с самого простого геометрического объекта - точки. Точка нульмерна. У неё нет ни длины, ни ширины, ни высоты.

Сдвинем теперь точку по прямой на некоторое расстояние. Допустим, что наша точка - остриё карандаша; когда мы её сдвинули, она прочертила отрезок. У отрезка есть длина, и больше никаких измерений: он одномерен. Отрезок «живёт» на прямой; прямая является одномерным пространством.

Тессеракт - четырехмерный куб

Возьмём теперь отрезок и попробуем его сдвинуть так, как раньше точку. Можно представить себе, что наш отрезок - это основание широкой и очень тонкой кисти. Если мы выйдем за пределы прямой и будем двигаться в перпендикулярном направлении, получится прямоугольник. У прямоугольника есть два измерения - ширина и высота. Прямоугольник лежит в некоторой плоскости. Плоскость - это двумерное пространство (2D), на ней можно ввести двумерную систему координат - каждой точке будет соответствовать пара чисел. (Например, декартова система координат на школьной доске или широта и долгота на географической карте.).

Если сдвинуть прямоугольник в направлении, перпендикулярном плоскости, в которой он лежит, получится «кирпичик» (прямоугольный параллелепипед) - трёхмерный объект, у которого есть длина, ширина и высота; он расположен в трёхмерном пространстве, в таком, в каком живём мы с вами. Поэтому мы хорошо представляем себе, как выглядят трёхмерные объекты. Но если бы мы жили в двумерном пространстве - на плоскости, - нам пришлось бы изрядно напрячь воображение, чтобы представить себе, как можно сдвинуть прямоугольник, чтобы он вышел из той плоскости, в которой мы живём.

Тессеракт - четырехмерный куб

Представить себе четырёхмерное пространство для нас также довольно непросто, хотя очень легко описать математически. Трёхмерное пространство - это пространство, в котором положение точки задаётся тремя числами (например, положение самолёта задаётся долготой, широтой и высотой над уровнем моря). В четырёхмерном же пространстве точке соответствует четвёрка чисел-координат. «Четырёхмерный кирпич» получается сдвигом обычного кирпичика вдоль какого-то направления, не лежащего в нашем трёхмерном пространстве; он имеет четыре измерения.

На самом деле мы сталкиваемся с четырёхмерным пространством ежедневно: например, назначая свидание, мы указываем не только место встречи (его можно задать тройкой чисел), но и время (его можно задавать одним числом, например количеством секунд, прошедших с определенной даты). Если посмотреть на настоящий кирпич, у него есть не только длина, ширина и высота, но ещё и протяженность во времени - от момента создания до момента разрушения.

Физик скажет, что мы живём не просто в пространстве, а в пространстве-времени; математик добавит, что оно четырёхмерно. Так что четвёртое измерение ближе, чем кажется.

Представление других измерений

От 2D к 3D

Ранняя попытка объяснить концепцию дополнительных измерений появилась в 1884 году с публикацией романа о плоской земле Эдвина А. Эббота «Флатландия: романтика множества измерений «. Действие в романе разворачивается в плоском мире, называемом «Флатландия», а повествование ведется от лица жителя этого мира — квадрата. Однажды во сне квадрат оказывается в одномерном мире — Лайнландии, жители которой (треугольники и другие двумерные объекты представлены в виде линий) и пытается объяснить правителю этого мира существование 2-го измерения, однако, приходит к выводу о том, что его невозможно заставить выйти за рамки мышления и представления только прямых линий.

Квадрат описывает его мир как плоскость, населенную линиями, кругами, квадратами, треугольниками и пятиугольниками.

Однажды перед квадратом появляется шар, но его суть он не может постичь, так как квадрат в своем мире может видеть только срез сферы, только форму двумерного круга.

Сфера пытается объяснить квадрату устройство трехмерного мира, но квадрат понимает только понятия «вверх/вниз» и «лево/право», он не способен постичь понятия «вперед/назад».

Только после того, как сфера вытащит квадрат из его двумерного мира в свой трехмерный мир, он наконец поймет концепцию трех измерений. С этой новой точки зрения квадрат становится способен видеть формы своих соотечественников.

Квадрат, вооруженный своим новым знанием, начинает осознавать возможность существования четвертого измерения. Также он приходит к мысли, что число пространственных измерений не может быть ограничено. Стремясь убедить сферу в этой возможности, квадрат использует ту же логику, что и сфера, аргументирующая существование трех измерений. Но теперь из них двоих становится «близорукой» сфера, которая не может понять этого и не принимает аргументы и доводы квадрата — так же, как большинство из нас «сфер» сегодня не принимают идею дополнительных измерений.

Рецензия на книгу Флатландия

Принимая во внимание исключительность как жанра, который при некоторой фантазии и существовании иных его представителей, можно было бы назвать математическим романом, так и самой книги, её не хочется сильно ругать. Тем не менее, похвалы здесь заслуживает только лишь непривычность подачи, по духу близкая произведениям Льюиса Керрола, однако, в отличие от него, имеющая гораздо меньше точек соприкосновения с реальной жизнью. Данная книга, как верно отмечено в предисловии к изданию, не похожа ни на одну популяризацию, читателю, однако, не вполне ясно, по какой причине её сравнивают с популяризациями, потому как, хотя математические истины в ней, безусловно, затрагиваются, какой бы то ни было популяризацией книгу определённо считать невозможно. И вот почему: Перед вами уникальный пример объединения художественного вымысла с математическими идеями. И поклоннику математики, любящему читать, задумка изначально кажется замечательной: подобно математическим постулатам, ввести в рассмотрение ряд абстрактных объектов, наделить их определёнными свойствами, задать правила игры в описанном пространстве, а после, подражая опять же мысли исследователя, наблюдающего взаимодействия этих умозрительных объектов, проследить за их трансформацией. Но, так как книга всё же художественная, усилиям воли учёного места здесь не находится, поэтому для самодостаточности представленного на всеобщее обозрение мира объекты здесь наделяются сознанием и мотивацией для каких-либо взаимодействий друг с другом, после чего в прежде абстрактный мир оторванных от повседневной жизни чистых идей приносятся социальные взаимодействия с целым ворохом проблем, всегда сопутствующих всяким взаимоотношениям. Всевозможные трения, возникающие в книге на социальной почве, по мнению зрителя совершенно не нужны в книге: они практически не раскрыты и не могут восприниматься в серьезе, и в то же время отвлекают читателя от истинно тех вещей, ради которых написана книга. Даже принимая во внимания заверения обоих авторов о неспешности повествования, якобы более комфортную для читателя при приобретении каких-либо знаний (именно здесь приводится сравнение с популяризациями), зрителю темп повествования показался чрезвычайно затянутым и медлительным, а повторение одного и того же объяснения по несколько раз одними и теми же словами заставило усомниться в том, что рассказчик адекватно оценивает его умственным способности. И в конечном счёте неясно, для кого эта книга. Непривычным к математике людям описание в общем-то интересных явление в столь вольной форме вряд ли принесёт удовольствие, знакомым же с математикой ближе будет гораздо приятнее взять в руки качественную популяризацию, где величие и красоту математики не разбавляют плоскими сказками.

От 3D к 4D

Нам сложно принять эту идею, потому что, когда мы пытаемся представить даже одно дополнительное пространственное измерение — мы упираемся в кирпичную стену понимания. Похоже, что наш разум не может выйти за эти границы.

Представьте себе, например, что вы находитесь в центре пустой сферы. Расстояние между вами и каждой точкой на поверхности сферы равно. Теперь попробуйте двигаться в направлении, которое позволяет вам отойти от всех точек на поверхности сферы, сохраняя при этом равноудаленность. Вы не сможете этого сделать..

Житель Флатландии столкнулся бы с такой же проблемой, если бы он находился в центре круга. В его двумерном мире он не может находиться в центре круга и двигаться в направлении, которое позволяет ему оставаться равноудаленными каждой точке окружности круга, если только он не перейдет в третье измерение. Увы, у нас нет проводника в четырехмерное пространство как в романе Эббота, чтобы показать нам путь к 4D.

Что такое гиперкуб? Построение тессеракта

Виды гиперкубов и их названия

1. Точка - нулевое измерение

2. Отрезок - одномерное пространство

3. Квадрат - двумерное пространство (2D)

4. Куб - трёхмерное пространство (3D)

5. Тессеракт - четырёхмерное пространство (4D)

Гиперкуб — это обобщающее название куба в производном числе измерений. Всего измерений десять, плюс точка (нулевое измерение).

Соответственно, существует одиннадцать видов гиперкуба. Рассмотрим построение тессеракта — гиперкуба четвертого измерения:

Для начала построим точку А (рис. 1):

После, соединим ее с точкой В. Получим вектор АВ (рис. 2):

Построим вектор, параллельный вектору АВ, и назовем его CD. Соединив начала и концы векторов, получим квадрат ABDC (рис. 3):

Теперь построим еще один квадрат A1B1D1C1, который лежит в параллельной плоскости. Соединив точки подобным образом, получим куб (рис. 4):

У нас есть куб. Представьте, что положение куба в трехмерном пространстве с течением времени изменилось. Зафиксируем его новое местоположение (рис 5.):

А теперь, мы проводим вектора, которые соединяют местоположение точек в прошлом и в настоящем. Получаем тессеракт (рис. 6):

Рис. 6 Тессеракт (построение)

Подобным образом строятся остальные гиперкубы, конечно же учитывается смысл пространства, в котором гиперкуб находится.

Как насчет 10D?

В 1919 году польский математик Теодор Калуца предположил, что существование четвертого пространственного измерения может увязать между собой общую теорию относительности и электромагнитную теорию. Идея, впоследствии усовершенствованная шведским математиком Оскаром Кляйном , заключалась в том, что пространство состояло как из «расширенных» измерений, так и из «свернутых» измерений. Расширенные измерения — это три пространственных измерения, с которыми мы знакомы, и свернутое измерение находится глубоко в расширенных размерах. Эксперименты позже показали, что свернутое измерение Калуцы и Кляйна не объединило общую теорию относительности и электромагнитную теорию, как это первоначально предполагалось, но спустя десятилетия теоретики теории струн нашли эту идею полезной, даже необходимой.

Математика, используемая в теории суперструн, требует не менее 10 измерений. То есть для уравнений, описывающих теорию суперструн и для того чтобы связать общую теорию относительности с квантовой механикой, для объяснения природы частиц, для объединения сил и т. д. — необходимо использовать дополнительные измерения. Эти измерения, по мнению теоретиков струн, завернуты в свернутое пространство, изначально описанное Калуцей и Кляйном.

Круги представляют собой дополнительный пространственный размер, свернутый в каждую точку нашего знакомого трехмерного пространства. │ WGBH / NOVA

Чтобы расширить скрученное пространство, чтобы включить эти добавленные размеры, представьте, что круги Калуцы-Клейна заменяются сферами. Вместо одного добавленного измерения мы имеем два, если рассматривать только поверхности сфер и три, если учесть пространство внутри сферы. Получилось всего шесть измерений. Так где же другие, которые требует теория суперструн?

Оказывается, что до того, как появилась теория суперструн, два математика Эудженио Калаби из Университета Пенсильвании и Шин-Тунг Яу из Гарвардского университета описали шестимерные геометрические формы. Если мы заменим сферы в скрученном пространстве этими формами Калаби-Яу, мы получим 10 измерений: три пространственных, а также шестимерные фигуры Калаби-Яу .

Шестимерные формы Калаби-Яу могут объяснять дополнительные размеры, требуемые теорией суперструн. │ WGBH / NOVА

Приверженцы теории струн делают ставку на то, что дополнительные измерения действительно существуют. На самом деле, уравнения, описывающие теорию суперструн, предполагают вселенную с не менее чем 10 измерениями. Но даже физикам, которые все время думают о дополнительных пространственных измерениях сложно описать как они могут выглядеть, или как люди могли бы приблизиться к их пониманию.

Если теория суперструн будет доказана и идея мира, состоящего из 10 или более измерений, подтвердится, то появится ли когда-нибудь объяснение или визуальное представление более высоких измерений, которые сможет постичь человеческий разум? Ответ на этот вопрос навсегда может стать отрицательным, если только какая-то четырехмерная жизненная форма не «вытащит» нас из нашего трехмерного мира и не даст нам увидеть мир с ее точки зрения.

УДК 115

© 2006 г ., А.В. Коротков, В.С. Чураков

Многомерные концепции пространства

и времени (пространства-времени)

Говоря о семимерном пространстве, следует уточнить, почему мы говорим именно о семимерном, а не о n -мерном пространстве, многомерном пространстве. Дело в том, что трехмерное векторное исчисление Гамильтона – Грассмана дает только три закона сохранения, а в физике элементарных частиц выяснились новые законы сохранения барионного числа, лептонного числа, четности, целый ряд законов сохранения. Стало понятно (по крайней мере, в области физики элементарных частиц), что физика должна быть существенно уточнена, расширена до многомерного варианта . Возникает вопрос: какой же размерностью следует обходиться – 4, 5, 6, 8, 129 или 1000001? Вопрос не праздный. Кроме того, даже если будет выяснена размерность физического пространства, что из эксперимента практически невозможно получить, то встанет вопрос о том – какой же математикой пользоваться при описании явлений в этом пространстве данной размерности, не равной трем?

Поэтому следует исходить, прежде всего, из теории чисел. Еще Пифагор отмечал, что все сущее есть число, т.е. физика, теоретическая физика – это теория числа по сути своей, теория трехмерных векторных чисел. Теория поля полностью и целиком построена на трехмерном векторном исчислении. Квантовая механика в том числе. Все разделы теоретической физики пользуются аппаратом трехмерной векторной алгебры трехмерного векторного исчисления. Попытки расширить пространство приводят к анализу, следовательно, самого понятия числа, как такового.

Одномерное векторное число – это пространство на линейке, пространство чисел на линейке. Трехмерное векторное число, трехмерное векторное пространство теперь нам всем хорошо понятно со времен Гамильтона, но не ранее того. Многомерное векторное пространство, определяемое линейной векторной алгеброй, как того требует трехмерное векторное исчисление, может быть получено путем расширения трехмерных векторных пространств, трехмерной векторной алгебры. Таким образом, мы должны в линейном векторном пространстве ввести векторное и скалярное произведения двух векторов. Это, собственно, основная задача теории многомерных чисел – ввести, определить скалярное, первое и второе векторное произведение двух векторов. Подходов к такому определению немного. В общем виде определение этих понятий ничего не дает, кроме путаницы.

Следует исходить из тех принципов, которыми пользовался еще Гамильтон при построении трехмерного векторного исчисления. Он сначала построил путем расширения комплексных чисел алгебру кватернионов, а затем из нее получил скалярное векторное произведение двух векторов в трехмерном векторном пространстве, т.е. в пространстве векторных кватернионов. Если идти по этому пути, то следует расширять, удваивать систему кватернионов до системы октанионов, что сделал Кэли в 1844 году, но дальнейшие преобразования использовать такие же, какие использовал Гамильтон при получении трехмерного векторного числа и четырехмерного кватернионного числа. Если идти по этому пути, то единственно возможной алгеброй, которая получается из алгебры кватернионов, является семимерная векторная алгебра со скалярным, евклидового характера и векторным произведением двух векторов .

То есть сразу дается ответ на два вопроса: какой размерности должно быть пространство? А это именно семь, не четыре, не пять, не шесть. И во-вторых, задано скалярное и векторное произведения двух векторов строго. Это позволяет развернуть алгебру, т.е. получить свойства алгебры, вытекающей из этих двух фундаментальных понятий, что и было в свое время осуществлено на практике. Таким образом, мы получаем семимерную евклидову векторную алгебру с семью ортами ортогональной системы координат, возможно ортогональной, в которой строится семимерный вектор. Сразу возникает целый ряд новых, совершенно новых для алгебры понятий, таких как: векторное произведение не только двух векторов, но и трех, четырех, пяти, шести векторов. Это инвариантные величины, дающие в свою очередь определенные законы сохранения. Среди скалярных величин также появляются величины инвариантные, как функции не только двух векторов скалярного произведения двух векторов, но и как функции большего числа векторов. Это смешанные произведения трех векторов, четырех векторов, семи векторов. По крайней мере, эти функции найдены, уточнены их свойства, и эти функции дают инвариантные понятия типа законов сохранения – законов сохранения этих величин. То есть появляется возможность получения совершенно новых законов сохранения величин, физических величин – при использовании вместо трехмерной алгебры семимерной векторной алгебры. Трехмерные законы сохранения энергии, импульса и момента импульса следуют из этой алгебры просто как частный случай. Они имеют место, сохраняются, никуда не исчезают, они фундаментальны, так же как и новые законы сохранения, появляющиеся при рассмотрении семимерных пространств .

Говоря о многомерности вообще, следовало бы уточнить: а нельзя ли построить алгебры большей размерности – векторной алгебры большей размерности? Ответ таков – можно! Но свойства этих алгебр совершенно иные, хотя они включают трехмерные семимерные алгебры как частный случай, как подалгебры. Свойства их видоизменяются. Например, известный закон для двойного векторного произведения будет сформулирован совершенно иначе. Это уже будет не алгебра Мальцева, это будет пятнадцатимерие – совершенно иная алгебра, а для тридцатиодномерия – вообще вопрос не изучался. Что говорить о 15-ти или 31-мерном пространстве, когда концепция семимерного пространства еще не завоевала прочной фундаментальной позиции в умах ученых. Прежде всего, нужно базироваться на анализе семимерного варианта как очередного варианта за трехмерным векторным исчислением. Надо отметить, что в векторной алгебре по своей сути не используют понятие деления, т.е. даже трехмерная алгебра – это алгебра без деления – нельзя вектору сопоставить обратный вектор, либо найти ему противоположный, т.е. найти обратный вектор. И в векторной алгебре отсутствует понятие единицы, как таковой, скалярной единицы, которую можно было бы делить на обратное число, получая вектор. Поэтому это снимает ограничения в плане того, что мы имеем только четыре алгебры с делением – четырехмерная, двухмерная, одномерная, восьмимерная. Расширение дальнейшее было бы просто невозможным. Но поскольку векторные алгебры – алгебры без деления, можно пытаться идти по этому пути дальше, строя многомерные алгебры.

Вторым аспектом является то, что уж поскольку мы работаем с алгебрами без деления, то можно использовать алгебры, которые могут быть получены путем расширения действительных чисел без использования процедуры деления. В двухмерном варианте это двойные и дуальные числа, в четырехмерном варианте – псевдокватернионы и дуальные кватернионы, в восьмимерном варианте – псевдооктанионы и дуальные октанионы. Из них той же процедурой Гамильтона можно получить трехмерные псевдоевклидовы индекса 2 и семимерные псевдоевклидовы индекса 4 векторные алгебры. Опять вопрос стоит о трехмерном и семимерном варианте. Надо отметить, что возможно также дуальное расширение, но дуальное расширение, в свою очередь, характеризуется тем, что оно не имеет изоморфной группы преобразований. Псевдоевклидовы алгебры трехмерные и семимерные, как оказывается, имеют группы, могут быть описаны групповыми свойствами преобразований этих векторных величин. В то же время дуальные величины преобразуются друг в друга с помощью матриц, квадратных матриц вырожденных, т.е. имеют определитель, не равный нулю, эти матрицы. И это резко ограничивает возможности таких алгебр для применения. Тем не менее, они могут быть построены. Но группы преобразований вырождены. Эта концепция приводит, следовательно, к расширению понятия действительного числа одномерной векторной величины, трехмерные векторные величины, дуальноевклидовы, псевдоевклидовы и собственно евклидовы и семимерные векторные величины – собственно евклидовы, дуальноевклидовы, псевдоевклидовы.

Математика таких пространств уже определена , и проблем с использованием преобразований и выражений в этих пространственных соотношениях не вызывают никаких затруднений. Единственно, несколько более сложный вариант – семимерие, нежели трехмерие. Но компьютерная техника позволяет без проблем осуществлять эти преобразования. Таким образом, мы фиксируем понятия одномерного, трехмерного и семимерного пространства, собственно евклидового, как основного из этих пространств, псевдоевклидового, как существующая возможность невырожденных преобразований пространственных с соответствующей группой псевдоевклидовых преобразований и дуальноевклидовых. Вот в результате получается набор из девяти векторных алгебр, которые можно рассматривать для физических приложений. По крайней мере, шесть величин собственно евклидовых и псевдоевклидовых, наверное немного неточно, не девять, а семь – и в результате не шесть, а четыре величины, пять величин, пять алгебр будут иметь место для возможных приложений физических. Итак, следует повторить: основа на данный момент, основным пространственным преобразованием пространственной векторной алгебры является семимерная евклидова алгебра . Это основа. Если эту основу изучить, освоить, применить, это будет уже очень немало. И позволит быстро и без проблем освоить основные векторные преобразования векторной алгебры.

Семимерное пространство характеризуется тем, что все пространственные направления совершенно одинаковые, т.е. пространство изотропно по своим свойствам. В то же время мы имеем не только понятия векторов, но и понятия изменения векторов, положения хотя бы векторов в пространстве. Следовательно, нужно оценивать характер изменения этих положений векторов в пространстве – и это уже с необходимостью приводит к применению понятия времени как скалярной величины, по которой можно осуществлять дифференцирования векторных величин. Поэтому более верной концепцией, наверное, будет рассматривать не просто семимерное пространство, а восьмимерное пространство – время. Семь совершенно идентичных пространственных координат плюс временная координата как скалярная компонента. То есть рассматривать восьмимерный радиус-вектор Ctr , где r – семикомпонентная величина, а t – время однокомпонентная скалярная величина. Точно так же это проделано в четырехмерном пространстве-времени Минковского и поэтому не вызывает никаких нареканий и отрицательных соображений и эмоций. Восьмимерное пространство-время связывает так же, как частная теория относительности, время с пространственными соотношениями. Имеет место относительность понятий пространственных величин и временных величин. Имеют место те же преобразования Лоренца, если использовать не YZ , равный нулю, а все шесть остальных компонентов, кроме первой, равными нулю. То есть частная теория относительности четырехмерного пространства-времени Минковского является просто частным случаем преобразования восьмимерного пространства-времени. Вот, собственно, наверное, и все, что следовало бы отметить. Единственное, стоило дополнить или повторить, что в семимерном пространстве имеют место совершенно новые законы сохранения величин, а в восьмимерном пространстве-времени точно так же появляются эти величины, как сохраняющиеся фундаментальные величины и варианты при переходе от одной системы восьмимерного пространства-времени к другой – другой системе отсчета.

Что еще стоило бы отметить? При использовании собственно евклидового семимерного пространства получается восьмимерное пространство- время индекса 1, по сути дела, либо некоторые авторы, наоборот, берут три отрицательные компоненты радиус-вектора, поэтому можно говорить об индексе 3, потому что квадрат скорости, либо квадрат радиуса-вектора определяется суммой квадратов компонентов в собственно евклидовом пространстве. В семимерном пространстве практически эта тенденция сохранена целиком и полностью, если использовать собственно евклидову векторную алгебру. Однако семимерное пространство может быть построено также с применением семимерной псевдоевклидовой векторной алгебры индекса 4, и это говорит о том, что квадрат интервала радиуса-вектора, квадрат радиуса-вектора лучше сказать, квадрат модуля радиуса-вектора может быть не только положительным, но также и нулем и даже отрицательной величиной, квадрат модуля радиус-вектора семимерного псевдоевклидового пространства. Точно так речь может вестись о квадрате любого вектора, в частности вектора скорости. Поэтому понятие скорости псевдоевклидовой семимерной векторной алгебры совершенно иное, нежели в семимерном собственно евклидовом пространстве. И это приводит к серьезнейшим изменениям в физическом плане, если строить физическую теорию на базе таких алгебр. В математическом плане нареканий нет, и алгебра может быть фундаментом для построения многомерной физики и, без проблем, многомерная физика строится. Сложнее восприятие этих величин. То есть скорость – величина, в данном случае скорость света, как фундаментальная величина может иметь место только как понятие скорости распространения электромагнитных волн. На базе восьмимерной псевдоевклидовой алгебры с применением семимерной псевдоевклидовой алгебры, скорость может быть не только положительной величиной, но и отрицательной и нулевой.

Это требует в свою очередь дополнительных рассмотрений таких физических пространств, осознания их наличия в действительном мире и попыткой объяснить теорию полей не только электромагнитных, но других, в частности гравитационных, слабых, сильных. Имеющиеся в настоящий момент векторные многомерные алгебры позволяют сделать более глубокий анализ, нежели наличие только трехмерной векторной алгебры и причем только собственно евклидовой векторной алгебры Гамильтона – Грассмана.

Библиографический список

1. Готт, В.С. Пространство и время микромира / В.С. Готт. – М.: Изд-во «Знание», 1964. – 40 с.

2. Коротков, А.В. Элементы семимерного векторного исчисления. Алгебра. Геометрия. Теория поля / А.В. Коротков. – Новочеркасск: Набла, 1996. – 244 с.

3. Румер, Ю.Б. Принципы сохранения и свойства пространства и времени / Ю.Б. Румер // Пространство, время, движение. – М.: Изд-во «Наука», 1971. – С. 107-125.

1. Важным этапом в развитии новых геометрических идей было создание геометрии многомерного пространства, о котором уже шла речь в предыдущей главе. Одной из причин ее возникновения служило стремление использовать геометрические соображения при решении вопросов алгебры и анализа. Геометрический подход к решению аналитических вопросов основан на методе координат. Приведем простой пример.

Требуется узнать, сколько целочисленных решений имеет неравенство . Рассматривая как декартовы координаты на плоскости, видим, что вопрос сводится к следующему: сколько точек с целочисленными координатами содержится внутри круга радиуса

Точки с целочисленными координатами - это вершины квадратов со стороной единичной длины, покрывающих плоскость (рис. 21). Число таких точек внутри круга приближенно равно числу квадратов, лежащих внутри круга, т. е. приблизительно равно площади круга радиуса Таким образом, интересующее нас число решений неравенства приближенно равно При этом нетрудно доказать, что допускаемая здесь относительная ошибка стремится к нулю при Более точное исследование этой погрешности представляет собой весьма трудную задачу теории чисел, служившую в сравнительно недавнее время предметом глубоких исследований.

В разобранном примере оказалось достаточным перевести задачу на геометрический язык, чтобы сразу получить результат, далеко не очевидный с точки зрения «чистой алгебры». Совершенно так же решается аналогичная задача для неравенства с тремя неизвестными. Однако, если неизвестных более трех, этот метод не удается применить, поскольку наше пространство трехмерно, т. е. положение точки в нем определяется тремя координатами. Для сохранения полезной геометрической аналогии в подобных случаях вводят представление об абстрактном

Мерном пространстве», точки которого определяются координатами При этом основные понятия геометрии обобщаются таким образом, что геометрические соображения оказываются применимыми к решению задач с переменными; это сильно облегчает нахождение результатов. Возможность такого обобщения основана на единстве алгебраических закономерностей, в силу которого многие задачи решаются совершенно единообразно при любом числе перемепных. Это позволяет применять геометрические соображения, действующие при трех переменных, к любому их числу.

2. Зачатки понятия о четырехмерном пространстве встречаются еще у Лагранжа, который в своих работах по механике рассматривал время формально как «четвертую координату» наряду с тремя пространственными. Но первое систематическое изложение начал многомерной геометрии было дано в 1844 г. немецким математиком Грассманом и независимо от него англичанином Кэли. Они шли при этом путем формальной аналогии с обычной аналитической геометрией. Эта аналогия в современном изложении выглядит в общих чертах следующим образом.

Точка в «-мерном нространстве онределяется координатами Фигура в -мерном пространстве - это геометрическое место, или множество точек, удовлетворяющих тем или иным условиям. Например, «n-мерный куб» определяется как геометрическое место точек, координаты которых подчинены неравенствам: Аналогия с обычным кубом здесь совершенно прозрачна: в случае, когда т. е. пространство трехмерно, наши неравенства действительно определяют куб, ребра которого параллельны осям координат и длина ребер равна (на рис. 22 изображен случай

Расстояние между двумя точками можно определить как корень квадратный из суммы квадратов разностей координат

Это представляет собой прямое обобщение известной формулы для расстояния на плоскости или в трехмерном пространстве, т. е. при n = 2 или 3.

Теперь можно определить в -мерном пространстве равенство фигур. Две фигуры считаются равными, если между их точками можно установить такое соответствие, при котором расстояния между парами соответственных точек равны. Преобразование, сохраняющее расстояния, можно назвать обобщенным движением. Тогда по аналогии с обычной

эвклидовой геометрией можно сказать, что предмет «-мерной геометрии составляют свойства фигур, сохраняющиеся при обобщенных движениях. Это определение предмета -мерной геометрии было установлено в 70-х годах и дало точную основу для ее разработки. С тех пор. -мерная геометрия служит предметом многочисленных исследований во всех направлениях, аналогичных направлениям эвклидовой геометрии (элементарная геометрия, общая теория кривых и т. п.).

Понятие расстояния между точками позволяет перенести на «n-мерное пространство также другие понятия геометрии, такие как отрезок, шар, длина, угол, объем и т. п. Например, -мерный шар определяется как множество точек, удаленных от данной не больше, чем на данное

Поэтому аналитически шар задается неравенством

где - координаты его центра. Поверхность шара задается уравнением

Отрезок можно определить как множество таких точек X, что сумма расстояний от X до А и В равна расстоянию от А до В. (Длина отрезка есть расстояние между его концами.)

3. Остановимся несколько подробнее на плоскостях различного числа измерений.

В трехмерном пространстве таковыми являются одномерные «плоскости» - прямые и обычные (двумерные) плоскости. В -мерном пространстве при вводятся в рассмотрение еще многомерные плоскости числа измерений от 3 до

Как известно, в трехмерном пространстве плоскость задается одним линейным уравнением, а прямая - двумя такими уравнениями.

Путем прямого обобщения приходим к следующему определению: -мерной плоскостью в -мерном пространстве называется геометрическое место точек, координаты которых удовлетворяют системе линейных уравнений

причем уравнения совместны и независимы (т. е. ни одно из них не является следствием других). Каждое из этих уравнений представляет -мерную плоскость, а все они вместе определяют общие точки к таких плоскостей.

То, что уравнения (8) совместны, означает, что вообще есть точки, им удовлетворяющие, т. е. данных -мерных плоскостей пересекаются. То, что ни одно уравнение не является следствием других, означает, что ни одно из них нельзя исключить. Иначе система сводилась бы к меньшему числу уравнений и определяла бы плоскость большего числа измерений. Таким образом, говоря геометрически, дело сводится к тому, что -мерная плоскость определяется как пересечение штук -мерных плоскостей, представляемых независимыми уравнениями. В частности, если то имеем уравнений, которые определяют «одномерную плоскость», т. е. прямую. Таким образом, данное определение А-мерной плоскости представляет естественное формальное обобщение известных результатов аналитической геометрии. Польза этого обобщения обнаруживается уже в том, что выводы, касающиеся систем линейных уравнений, получают геометрическое истолкование, которое делает эти выводы более ясными. С таким геометрическим подходом к вопросам линейной алгебры читатель мог ознакомиться в главе XVI.

Важным свойством -мерной плоскости является то, что она может рассматриваться сама как -мерное пространство. Так, например, трехмерная плоскость сама есть обычное трехмерное пространство. Это дает возможность переносить на пространства высшего числа измерений многие выводы, полученные для пространств низшего числа измерений, подобно обычным рассуждениям от

Если уравнения (8) совместны и независимы, то, как доказывается в алгебре, из переменных можно выбрать к так, что остальные переменных можно через них выразить. Например:

Здесь могут принимать любые значения, а остальные через них определяются. Это значит, что положение точки на -мерной плоскости определяется уже к координатами, могущими принимать любые значения. Именно в этом смысле плоскость имеет к измерений.

Из определения плоскостей разного числа измерений можно чисто алгебраически вывести следующие основные теоремы.

1) Через каждые точку, не лежащую на одной -мерной плоскости, проходит -мерная плоскость и притом только одна.

Полная аналогия с известными фактами элементарной геометрии здесь очевидна. Доказательство этой теоремы опирается на теорию систем линейных уравнений и несколько сложно, так что мы не будем излагать.

2) Если -мерная и -мерная плоскости в -мерном пространстве имеют хотя бы одну общую точку и при этом то они пересекаются по плоскости размерности не меньшей, чем

Как частный случай отсюда вытекает, что две двумерные плоскости в трехмерном пространстве, если они не совпадают и не параллельны, пересекаются по прямой Но уже в четырехмерном пространстве две двумерных плоскости могут иметь единственную общую точку. Например, плоскости, задаваемые системами уравнений:

очевидно, пересекаются в единственной точке с координатами

Доказательство сформулированной теоремы чрезвычайно просто: -мерная плоскость задается уравнениями; -мерная задается уравнениями; координаты точек пересечения должны удовлетворять одновременно всем уравнениям. Если ни одно уравнение не является следствием остальных, то по самому определению плоскости в пересечении имеем -мерную плоскость; в противном случае получается плоскость большего числа измерений.

К двум указанным теоремам можно добавить еще две.

3) На каждой -мерной плоскости есть по крайней мере точек, не лежащих в плоскости меньшего числа измерений. В -мерном пространстве есть по крайней мере точек, не лежащих ни в какой плоскости.

4) Если прямая имеет с плоскостью (любого числа измерений) две общие точки, то она целиком лежит в этой плоскости. Вообще, если -мерная плоскость имеет с -мерной плоскостью общих точек, не лежащих в -мерной плоскости, то она целиком лежит в этой -мерной плоскости.

Заметим, что -мерную геометрию можно строить, исходя из аксиом, обобщающих аксиомы, сформулированные в § 5. При таком подходе четыре указанные выше, теоремы принимаются за аксиомы сочетания. Это кстати показывает, что понятие аксиомы относительно: одно и то же

утверждение при одном построении теории выступает как теорема, при другом - как аксиома.

4. Мы получили общее представление о математическом понятии многомерного пространства. Чтобы выяснить реальный физический смысл этого понятия, обратимся снова к задаче графического изображения. Пусть, например, мы хотим изобразить зависимость давления газа от объема. Берем на плоскости координатные оси и на одной оси откладываем объем , а на другой - давление . Зависимость давления от объема при данных условиях изобразится некоторой кривой (при данной температуре для идеального газа это будет гипербола согласно известному закону Бойля-Мариотта). Но если мы имеем более сложную физическую систему, состояние которой задается уже не двумя данными (как объем и давление в случае газа), а, скажем, пятью, то графическое изображение ее поведения приводит к представлению соответственно о пятимерном пространстве.

Пусть, например, речь идет о сплаве трех металлов или о смеси трех газов. Состояние смеси определяется четырьмя данными: температурой давлением и процентными содержаниями двух газов (процентное содержание третьего газа определяется тогда тем, что общая сумма процентных содержаний равна 100%, так что Состояние такой смеси определяется, следовательно, четырьмя данными. Графическое его изображение требует или соединения нескольких диаграмм, или приходится представлять себе это состояние в виде точки четырехмерного пространства с четырьмя координатами Таким представлением фактически пользуются в химии; применение методов многомерной геометрии к задачам этой науки разработано американским ученым Гиббсом и школой советских физико-химиков академика Курнакова. Здесь введение многомерного пространства диктуется стремлением сохранить полезные геометрические аналогии и соображения, исходящие из простого приема графического изображения.

Приведем еще пример из области геометрии. Шар задается четырьмя данными: тремя координатами его центра и радиусом. Поэтому шар можно представлять точкой в четырехмерном пространстве. Специальная геометрия шаров, которую построили около ста лет назад некоторые математики, может рассматриваться поэтому как некоторая четырехмерная геометрия.

Из всего сказанного выясняется общее реальное основание для введения понятия многомерного пространства. Если какая-либо фигура, или состояние какой-либо системы и т. задается данными, то эту фигуру, это состояние и т. п. можно мыслить как точку некоторого -мерного пространства. Польза этого представления примерно та же, что польза обычных графиков: она состоит в возможности применить известные геометрические аналогии и методы для изучения рассматриваемых явлений.

В математическом понятии многомерного пространства нет, следовательно, никакой мистики. Оно представляет собой не более как некоторое абстрактное понятие, выработанное математиками для того, чтобы описывать на геометрическом языке такие вещи, которые не допускают простого геометрического изображения в обычном смысле. Это абстрактное понятие имеет вполне реальное основание, оно отражает действительность и было вызвано потребностями науки, а не праздной игрой воображения Оно отражает тот факт, что существуют вещи, которые, как шар или смесь из трех газов, характеризуются несколькими данными, так что совокупность всех таких вещей является многомерной. Число измерений в данном случае есть именно число этих данных. Как точка, двигаясь в пространстве, меняет три свои координаты, так шар, двигаясь, расширяясь и сжимаясь, изменяет четыре свои «координаты», т. е. четыре величины, которые его определяют.

В следующих параграфах мы еще остановимся на многомерной геометрии. Сейчас же важно только понять, что она является методом математического описания реальных вещей и явлений. Представление о каком-то четырехмерном пространстве, в котором находится наше реальное пространство - представление, использовавшееся некоторыми беллетристами и спиритами, не имеет отношения к математическому понятию о четырехмерном пространстве. Если и можно говорить здесь об отношении к науке, то разве лишь в смысле фантастического искажения научных понятий.

5. Как уже говорилось, геометрия многомерного пространства строилась сначала путем формального обобщения обычной аналитический геометрии на произвольное число переменных. Однако такой подход к Делу не мог полностью удовлетворить математиков. Ведь цель состояла не столько в обобщении геометрических понятий, сколько в обобщении самого геометрического метода исследования. Поэтому важно было дать чисто геометрическое изложение -мерной геометрии, не зависящее от аналитического аппарата. Впервые это было сделано швейцарским математиком Шлефли в 1852 г., рассмотревшим в своей работе вопрос о правильных многогранниках многомерного пространства. Правда, работа Шлефли не была оценена современниками, так как для ее понимания нужно было в той или иной мере подняться до абстрактного взгляда на геометрию. Лишь дальнейшее развитие математики внесло в этот в опрос [полную ясность, выяснив исчерпывающим образом взаимоотношение аналитического и геометрического подходов. Не имея возможности углубляться в этот вопрос, мы ограничимся примерами геометрического изложения -мерной геометрии. Рассмотрим геометрическое определение -мерного куба. Двигая отрезок в плоскости перпендикулярно самому себе на расстояние, равное его длине, мы зачертим квадрат, т. е. двумерный куб (рис. 23, а). Совершенно аналогично, двигая квадрат в направлении, перпендикулярном его плоскости, на расстояние, равное его

стороне, мы зачертим трехмерный куб (рис. 23, б). Чтобы получить четырехмерный куб, применяем то же построение: взяв в четырехмерном пространстве трехмерную плоскость и в ней трехмерный куб, двигаем его в направлении, перпендикулярном этой трехмерной плоскости, на расстояние, равное ребру (по определению прямая перпендикулярна -мерной плоскости, если она перпендикулярна всякой прямой, лежащей в этой плоскости). Это построение условно представлено на рис. 23, в, Здесь изображено два трехмерных куба - данный куб в первоначальном и конечном положении. Линии, соединяющие вершины этих кубов, изображают те отрезки, по которым двигаются вершины при перемещении куба.

Мы видим, что четырехмерный куб имеет всего 16 вершин: восемь у куба и восемь у куба . Далее, он имеет 32 ребр»: 12 ребер передвигаемого трехмерного куба в начальном положении ребер его в конечном положении и 8 «боковых» ребер. Он имев! 8 трехмерных граней, которые сами являются кубами. При движенга трехмерного куба каждая его грань зачерчивает трехмерный куб, так что получается 6 кубов - боковых граней четырехмерного куба, и, кроме того, имеются еще две грани: «передняя» и «задняя», соответственно перво начальному и конечному положению передвигаемого куба. Наконец, четырехмерный куб имеет еще двумерные квадратные грани общим числом 24: по шести у кубов и еще 12 квадратов, которые зачерчу вают ребра куба при его перемещении.

Итак, четырехмерный куб имеет 8 трехмерных граней, 24 двумерных грани, 32 одномерных грани (32 ребра) и, наконец, 16 вершин; кажда грань есть «куб» соответствующего числа измерений: трехмерный куб, квадрат, отрезок, вершина (ее можно считать нульмерным кубом).

Аналогично, перемещая четырехмерный куб «в пятое измерение», получим пятимерный куб, и так, повторяя это построение, можно построить куб любого, числа измерений. Все грани -мерного куба сами

являются кубами меньшего числа измерений: -мерные, и т. д. и, наконец, одномерные, т. е. ребра. Любопытной и нетрудной задачек является найти, сколько граней каждого числа измерений имеет -мерный куб. Легко убедиться, что он имеет штук -мерных граней и вершин. А сколько будет, например, ребер?

Рассмотрим еще один многогранник -мерного пространства. На плоскости простейшим многоугольником является треугольник - он имеет наименьшее возможное число вершин. Чтобы получить многогранник с наименьшим числом вершин, достаточно взять точку, не лежащую в плоскости треугольника, и соединить ее отрезками с каждой точкой этого треугольника. Полученные отрезки заполнят трехгранную пирамиду - тетраэдр (рис. 24).

Чтобы получить простейший многогранник в четырехмерном пространстве, рассуждаем так. Берем какую-нибудь трехмерную плоскость и в ней некоторый тетраэдр Т. Затем, взяв точку, не лежащую в данной трехмерной плоскости, соединяем ее отрезками со всеми точками тетраэдра Т. На самом правом из рис. 24 условно изображено это построение. Каждый из отрезков, соединяющих точку О с точкой тетраэдра Т, не имеет с тетраэдром других общих точек, так как в противном случае он целиком помещался бы в трехмерном пространстве, содержащем Т. Все такие отрезки как бы «идут в четвертое измерение». Они заполняют простейший четырехмерный многогранник - так называемый четырехмерный симплекс. Его трехмерные грани суть тетраэдры: один в основании и еще 4 боковых грани, опирающиеся на двумерные грани основания; всего 5 граней. Его двумерные грани - треугольники; их всего 10: четыре у основания и шесть боковых. Наконец, он имеет 10 ребер и 5 вершин.

Повторяя такое же построение для любого числа измерений, получим простейший -мерный многогранник - так называемый n-мерный симплекс. Как видно из построения, он имеет вершину. Можно убедиться, что все его грани тоже являются симплексами меньшего числа измерений: -мерные, -мерные и т. д.

Легко также обобщить понятия призмы и пирамиды. Если мы будем параллельно переносить многоугольник из плоскости в третье измерение, то он зачертит призму. Аналогично, перенося трехмерный многогранник в четвертое измерение, получим четырехмерную призму (условно это изображено на рис. 25). Четырехмерный куб есть, очевидно, частный случай призмы.

Пирамида строится следующим образом. Берется многоугольник в точка О, не лежащая в плоскости многоугольника. Каждая точка многоугольника соединяется отрезком с точкой О и эти отрезки заполняют пирамиду с основанием (рис. 26). Аналогично, если в четырехмерном пространстве дан трехмерный многогранник и точка О, не лежащая с ним в одной трехмерной плоскости, то отрезки, соединяющие точки многогранника с точкой О, заполняют четырехмерную пирамиду с основанием Четырехмерный симплекс есть не что иное, как пирамида с тетраэдром в основании.

Совершенно аналогично, отправляясь от -мерного многогранника можно определить -мерную призму и -мерную пирамиду.

Вообще -мерный многогранник есть часть -мерного пространства, ограниченная конечным числом кусков -мерных плоскостей; -мерный многогранник есть часть -мерной плоскости, ограниченная конечным числом кусков -мерных плоскостей. Грани многогранника сами являются многогранниками меньшего числа измерений.

Теория -мерных многогранников представляет собой богатое конкретным содержанием обобщение теории обычных трехмерных многогранников. В ряде случаев теоремы о трехмерных многогранниках обобщаются на любое число измерений без особого труда, но встречаются и такие

вопросы, решение которых для -мерных многогранников представляет огромные трудности. Здесь можно упомянуть глубокие исследования Г. Ф. Вороного (1868-1908), возникшие, кстати сказать, в связи с задачами теории чисел; они были продолжены советскими геометрами. Одна из возникших задач - так называемая «проблема Вороного» - все еще не решена полностью

Примером, на котором обнаруживается существенная разница между пространствами разных измерений, могут служить правильные многогранники. На плоскости правильный многоугольник может иметь любое число сторон. Иными словами, имеется бесконечно много разных видов правильных «двумерных многогранников». Трехмерных правильных многогранников всего пять видов: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. В четырехмерном пространстве есть шесть видов правильных многогранников, но уже в любом пространстве большего числа измерений их всего три. Это: 1) аналог тетраэдра - правильный -мерный симплекс, т. е. симплекс, все ребра которого равны;

2) -мерный куб; 3) аналог октаэдра, который строится следующим образом: центры граней куба служат вершинами этого многогранника, так что он как бы натягивается на них. В случае трехмерного пространства это построение произведено на рис. 27. Мы видим, что в отношении правильных многогранников двух, трех и четырехмерные пространства занимают особое положение.

6. Рассмотрим еще вопрос об объеме тел в -мерном пространстве. Объем -мерного тела определяется аналогично тому, как это делается в обычной геометрии. Объем - это сопоставляемая фигуре численная характеристика, причем от объема требуется, чтобы у равных тел были равные объемы, т. е. чтобы объем не менялся при движении фигуры как твердого целого, и чтобы в случае, когда одно тело сложено из двух, его объем был равен сумме их объемов. За единицу объема принимается объем куба с ребром, равным единице. После этого устанавливается, что объем куба с ребром а равен Это делается так же, как на плоскости и в трехмерном пространстве, путем заполнения куба слоями из кубов (рис. 28). Так как кубы укладываются по направлениям, то это и дает

Вообще, идея многомерности пространства на самом деле не так уж и нова. Ее геометрическими интерпретациями в прошлые века занимались Мебиус, Якоби, Кели, Плюккер и другие ученые. Но в наиболее общем виде многомерная геометрия нашла свое отражение в работах немецкого математика Римана, а также в геометрии постоянной кривизны нашего соотечественника Лобачевского, которую применял немецкий математик Миньковский в специальной теории относительности.

В 1926 году шведский ученый Клейн высказал предположение о четвертом и пятом измерениях, а также то, что они могут быть свернуты до очень малых размеров, а потому не наблюдаются нами. Его работы положили начало нескольким более поздним гипотезам многомерной структуре пространства, изложенным в ряде работ по квантовой физике, причем количество пространственных измерений варьируется в этих гипотезах в очень широких пределах.
Например, известный физик Р.Бартини считал, что Вселенная шестимерна, при этом три измерения связаны с пространством, а три - со временем. При таком раскладе каждый из миров повинуется своим особым законам и условиям, не имея непосредственного отношения к нашему миру.
Многомерную модель Вселенной описывал в своей «Розе Мира» Д.Андреев. Многие мистики знали о существовании других, «параллельных» миров, отличающихся от нашего мира количеством пространственно-временных координат. Многомерную структуру Вселенной обосновывали Циолковский, Вернадский, Сахаров и многие другие известные ученые. Так, В.Демин замечает: «Вообще же под многослойностью космоса понимается такая материальная структурированность, когда каждому слою или их комбинации присущи разные наборы пространственно-временных измерений. Рядом с нашим привычным, чувственно доступным миром сосуществуют другие смежные слои с иным числом пространственных или временных координат».
В последние десятилетия появилась новая оригинальная теория суперструн, которая предполагает отказ от понятия «частица» и замену ее «многомерной струной». Эта теория формируется на базе десятимерного пространства-времени, но и до нее была сформулирована еще одна теория, постулирующая одиннадцать измерений или одиннадцатимерную Вселенную. Все эти теории хорошо объясняют существование параллельных нашему миру миров и пространств.
Еще одна интересная современная теория
теория суперсимметрий, которая утверждает существование целого параллельного мира, состоящего из «зеркальных» частиц, лишь немного отличающихся от наших. Однако, в этом «зеркальном» мире («зазеркалье?») действуют совершенно другие законы. Материя этого мира невидима и не взаимодействует, в отличие от антиматерии, с материей нашего мира. Это позволяет такому миру занимать один и тот же объем пространства с нашим миром. Единственная сила, общая для обоих миров это гравитация. И именно с гравитационными аномалиями (искажение гравитационного поля) связывают современные исследователи периодически появляющиеся «окна» в параллельные реальности.
Вполне вероятно, что на нашей планете существует ряд мест, где происходит сближение нашего трехмерного мира с другими мирами. В таких «точках пересечения» образуются своеобразные «входы» и «выходы» в другие миры. Такие контакты между мирами могут иметь место не только на поверхности земли, но и над ее поверхностью, а также под ней. Естественно, что далеко не всегда попадание в такие зоны приводит к исчезновению объекта или субъекта, но, тем не менее, именно их существованием можно объяснить проявление пространственно-временных феноменов.
О многомерности пространства во все века знали маги и шаманы, которые в «энергетическом теле» путешествовали в другие реальности. Среди них были и такие, которые могли телепортироваться в эти реальности и в физическом теле. Их представления о параллельных мирах в сравнении с современными теориями отнюдь не кажутся суеверием:
«Прямо здесь, перед нами, расстилаются неисчислимые миры. Они наложены друг на друга, друг друга пронизывают, их множество, и они абсолютно реальны... Мир - это тайна. И то, что ты видишь перед собой в данный момент, - еще далеко не все, что здесь есть. В мире есть еще столько всего... Он воистину бесконечен в каждой своей точке. Поэтому попытки что-то для себя прояснить - это на самом деле всего лишь попытки сделать какой-то аспект мира чем-то знакомым, привычным. Мы с тобой находимся здесь, в мире, который ты называешь реальным, только потому, что оба мы его знаем. Ты не знаешь мира силы, а поэтому неспособен превратить его в знакомую картину». (К.Кастанеда «Путешествие в Икстлан»).
В последние годы пространственно-временные феномены стали проявляться и в непосредственной близости от Останкинской телебашни. Временами у ее подножия скапливается багровый туман, местность начинает искажаться, и люди, находящиеся здесь, на время исчезают. При этом сами они не подозревают, что исчезли из нашего мира - у них просто останавливаются часы. Один такой случай уже описывал журналист И.Царев.
Участником еще одного подобного случая у телебашни оказался в 1993 году работник одной из коммерческих фирм - С.Камеев, который описал произошедшее следующим образом:
«Я с Б.Иващенко стояли здесь... Олег Каратьян шел к нам. Было ветрено, площадь покрывали пятна непросохших луж. Олег как раз перебирался через одну из них. Тут все и началось...
Воздух басовито загудел - негромко, но так, что ушам стало больно. Я поднял глаза и увидел, что вокруг останкинской телебашни распространяется «красноватое свечение», а затем ее «изображение» смазалось, мигнуло, и башня «проявилась» уже немного ближе. Тут Иванщенко закричал: «Олег! Олег!», и я обнаружил, что Каратьян, который был всего в шагах двадцати, исчез...
Что самое страшное, не было и лужи, через которую он перебирался. Участок площади перед нами был совершенно сухим. Я бросился было вперед, но ноги словно приросли к земле. Не знаю, сколько мы так простояли, может минуту, а может, и все десять.
Площадь была пустынной. Ни одного человека вокруг. Ни одного места, куда бы можно было спрятаться. И на сердце закипал какой-то черный ужас. Дело даже не в том, что вместе с Олегом исчез и дипломат с большой суммой денег, которые он должен был передать нам. Наш друг сгинул так внезапно, словно его стерли резинкой с листа бумаги.
Потом гудение усилилось, поверхность площади стала как-то неуловимо растягиваться и... мы снова увидели Олега. Лужа, через которую он перебирался, тоже вернулась на место…»

Вероятнее всего этот феномен связан с действием мощных электромагнитных полей, излучаемых телепередатчиками, которые пробивают в нашем пространстве-времени «дыры» - проходы в другие миры, где возможен другой ход времени. Кроме того «Останкино» расположено на месте старого кладбища, а места массовых захоронений людей, также обладают способностью искажать наше пространство-время, что и объясняет появление призраков и хрономиражей. Филадельфийский эксперимент доказал способность мощных электромагнитных полей деформировать наше пространство-время. Современная физика отнюдь не отрицает возможность изменения хода времени и попадания в другие, параллельные нашему, пространства. В данном случае, очевидно, произошло наложение этих двух факторов, что и привело к временному «проваливанию» в некую параллельную реальность.
Характерно, что подобные феномены в Москве не единичны. Г.Осетров - другой исследователь аномальных явлений - отмечает, что часто пространственно-временные феномены возникают по ночам или на рассвете в переулках вокруг Пятницкой улицы, между Бронными улицами, в Китай-городе, в районе Таганки и Яузских ворот, в районе Красной площади, в Коломенском у Девичьего камня, а также на Ордынке, где он сам трижды становился свидетелем таких феноменов. И что удивительно: перед проявлением таких феноменов, часто наблюдаются всевозможные призраки, которых многие оккультисты считают обитателями параллельных миров.
Вот как он описывает первый случай:
«Итак, три часа ночи. Ордынка почему-то освещена лишь тусклыми фонарями. Ни такси, ни частной машины я не вижу уже минут пятнадцать. Даже отдаленного шума проезжающего где-нибудь транспорта не слышно. Как-будто что-то вокруг меня неожиданно изменилось. И вдруг я увидел серую кошку, которая трусцой пересекла мостовую и исчезла прямо в стене старинного особняка с мансардой. «та-а-к, интересно!» - подумал я, но тут мои размышления прервал чей-то хриплый голос:

- Эй, барин!

Я оглянулся и заметил посреди мостовой молодца в лакированном картузе, поддевке, малиновой рубахе и яловых сапогах. Он заметно покачивался от изрядной дозы выпитого спиртного, а я подумал, что встретил одного из завсегдатаев ночного клуба, возвращающегося домой с костюмированного бала, на который он вырядился мастеровым начала века.

- Эй, барин! - хрипло повторил «мастеровой», - Ты чего это на нашей улице потерял?

- Ничего, - стараясь мирно говорить с пьяным, ответил я. - Вот такси ловлю.

Сердце мое похолодело, так как я понял, что передо мной совсем не завсегдатай ночного клуба, а истинный мастеровой с какой-нибудь дореволюционной фабрики. Но ничего осмыслить до конца я не успел.

Незнакомец нагнулся, нашарил на мостовой половинку кирпича и лихо метнул ее в мою сторону. Уже теряя сознание, я слышал только его пьяный смех...

Я очнулся на сереньком рассвете, сидя на бордюре мостовой и вытирая платком кровь, стекавшую со лба и заливавшую глаза».

Подобные инциденты повторились с ним еще дважды на том же самом месте и в то же время суток. Только действующими лицами на этот раз были дореволюционная проститутка и революционный патруль, который чуть не расстрелял Г.Осетрова. Каждый раз все начиналось с пробега кошки.
Подобные случаи происходят и в других городах России. Так, например, довольно часто «проваливаются» в параллельный мир люди на Красноармейской площади возле вокзала в городе Череповец.
Исследователь полагает, что в исторических местах, где тесно переплетаются биополя многих поколений, существует реальная возможность изменения нормального хода времени. И тогда через образующийся «провал» пространства мы попадаем в иное время. Или, наоборот - через такие же воронки во времени и пространстве на поверхность выходит из прошлого незнакомый и чуждый нам мир.
Наиболее часто контакты с параллельными мирами происходят в темное время суток. Не случайно маги считают сумерки - трещиной между мирами.
Академик М.А.Марков на основании своих теоретических исследований также пришел к выводу о существовании этих параллельных миров. Он считает, что на нашей планете может существовать множество других миров, отстоящих от нашего на кванты времени и в прошлое, и в будущее. И все они, в основном, повторяют один и тот же путь развития. Правда, всегда возможны и некоторые незначительные различия.
Исходя из этого, можно сделать вывод, что теоретически не исключена возможность перехода из одного мира в другой, в ту или иную сторону и совершать небольшие «скачки» во времени. Иногда попав в такой, близкий к нашему, параллельный мир, можно лишь по незначительным отличиям определить, что ты уже не в нашем мире. Подобный случай произошел с одним из москвичей, который на одной из станций метро вдруг обнаружил, что в мире, где он очутился, все надписи сделаны справа налево. Только через сутки ему удалось вернуться в наш мир, проехав через эту станцию в обратном направлении.
Вот как этот случай описывает исследователь И.Шлионская: «Все началось с происшествия, случившегося с самим Алексеем Павловичем еще в студенческие годы. Он тогда жил в Москве в институтском общежитии. Как-то поздним вечером возвращался из театра. Вошел в метро, спустился по эскалатору на платформу - и вдруг увидел странную вещь: линии как бы поменялись местами. Ему, как он помнил, следовало свернуть налево, но на указателе его станция значилась почему-то с правой стороны. Удивленный, он повернул направо. Поезд действительно шел по этой линии, но совсем не в ту сторону! Вернее, линия вела в сторону, противоположную той, где она находилась раньше.
Выход из метро тоже оказался в другой стороне. Все же Алексей Павлович добрался до общежития... и тут обнаружил, что комнаты на его этаже поменяли свои номера. Справа значились те, что были слева, а слева - те, что справа. Он попал поначалу в чужую комнату - и уже потом сообразил, что его дверь - напротив. Ничего не понимая, Алексей Павлович решил, что всему виной - рюмка шампанского, выпитая им в театральном буфете. Соседа по комнате в это время не было, и обсудить эти странности было не с кем.
Утром Алексей Павлович поехал на занятия и снова обратил внимание на то, что вход в метро находится не с той стороны и поезда идут вроде бы опять не в ту сторону. Словно по наитию он доехал до той станции, с которой вчера отправился домой, вышел наверх, осмотрелся - ничего особенного. Спустился в метро, и - о чудо! - линии были на месте.

Когда Алексей Павлович в тот день вернулся в общежитие, его сосед спросил:

- А где ты был ночью?

- Как где? Здесь!

- Да не было же тебя! Я до утра проспал, а ты так и не явился!

- Так это тебя не было! Я пришел комната пустая.

- Да, видать, перебрал ты вчера малость, - сочувственно посмотрел на него сосед.

Алексей Павлович никому не рассказывал, что с ним было, так как сам не мог разобраться. Только впоследствии, читая фантастику научно-популярные книги и статьи, задумался - а не мог ли он попасть на какое-то время в другое измерение? Вот тогда он и заинтересовался всерьез проблемой многомерности. Несколько раз ему доводилось встречаться с людьми, которые рассказывали истории, похожие на его собственную. И он понял - это не единичный случай».
Всерьез занявшись этой проблемой, он пришел к теории многомерности Вселенной с помощью выведенных им формул. Как считает ученый, переход из одного измерения в другое может происходить совершенно незаметно для нас. Вселенная представляет из себя как бы коробку большого размера со множеством отделений-миров, соединенных перемычками. Чем дальше миры отстоят друг от друга, тем больше различий и наоборот. При этом для любого объекта из любого мира вероятность очутиться в соседнем измерении, почти идентичном его собственному, намного больше, чем в каком-либо другом. И поскольку этот мир очень похож на его собственный, он может и не заметить того, что с ним произошло. Ведь разнятся они только в деталях. Так мир, описанный в предыдущем отрывке, отличался тем, что в нем все было наоборот.
Учитывая все это, И.Шлионская приходит к следующему выводу: «Наверное, с каждым бывало: какая-то вещь только что лежала на месте - и вдруг ее нет, неизвестно куда делась. А это ее хозяин перешагнул черту, отделяющую одно измерение от другого. А в другом измерении этот предмет просто не существует или находится совсем в ином месте. Да и сама вещь может «провалиться» в другой мир.
Фантасты, которые пишут о параллельных мирах, часто представляют нам и «параллельных людей», наших двойников, живущих в этих мирах. На самом деле совсем не обязательно, что если мы перейдем в «соседний» мир, то непременно встретимся там со своим двойником. Пространственная вибрация, в результате которой и происходит переход, переводит объект в то, что ему соответствует в другом измерении. А в своем мире он вообще может исчезнуть - не исключено, что этим объясняются многие бесследные исчезновения людей».

пространство, имеющее число измерений (размерность) более трёх. Реальное пространство трёхмерно. Через каждую его точку можно провести три взаимно перпендикулярные прямые, но уже нельзя провести четыре. Если принять указанные три прямые за оси координат, то положение каждой точки пространства определится заданием трёх действительных чисел - её прямоугольных координат. Обобщая это положение, я-мерным евклидовым пространством называют совокупность всевозможных систем из п чисел - "точек" этого пространства.

  • - ...

    Физическая энциклопедия

  • - веществ. линейное пространство, снабжённое не положительно определённым скалярным произведением. Для П. п. размерности n и индекса p аксиома положит...

    Физическая энциклопедия

  • - топологическое пространство с умножением, обладающим двусторонней гомотопич. единицей. Подробнее, пунктированное топологич...

    Математическая энциклопедия

  • - Канторовича пространство,- порядково полное векторное пространство, т. е. векторное полуупорядоченное пространство, в к-ром всякое ограниченное сверху множество имеет верхнюю грань...

    Математическая энциклопедия

  • - распределение вероятностей на -алгебре борелевских множеств s-мерного евклидова пространства...

    Математическая энциклопедия

  • - логически мыслимая форма, служащая средой, в к-рой осуществляются другие формы и те или иные конструкции...

    Математическая энциклопедия

  • - пространство между паутинной и мягкой моз говыми оболочками головного и спинного мозга, в котором находится спинномозговая жидкость и проходят крупные кровеносные сосуды...

    Медицинские термины

  • - Под М. ш. в большинстве случаев понимается семейство моделей и связанных с ними методов для представления данных о сходствах или различиях стимульных объектов либо др. элементов на основе заданной...

    Психологическая энциклопедия

  • - вид шкалирования, которое в большинстве случаев основано на неметрических методах оценки сходства и различия между сигналами. Ш. м. занимает особое место среди методов шкалирования...

    Большая психологическая энциклопедия

  • - пространство, имеющее число измерений более трёх. Реальное пространство имеет 3 измерения, поверхность - 2, линия 1. Обычная "пространственная интуиция", человека ограничена тремя измерениями...

    Большой энциклопедический политехнический словарь

  • - технология представления данных в одном массиве для оперативной динамичной аналитической обработки.По-английски: Multidimensional viewСм. также: Структуры баз данных  ...

    Финансовый словарь

  • - пространство, имеющее число измерений более трёх. Обычное евклидово пространство, изучаемое в элементарной геометрии, трёхмерно; плоскости - двумерны, прямые - одномерны...

    Большая Советская энциклопедия

  • - МНОГОМЕРНОЕ пространство - пространство, имеющее число измерений более трех. Реальное пространство трехмерно...

    Большой энциклопедический словарь

  • - Устар. В неопределённом направлении; бесцельно, не обращаясь ни к кому. Лежит на подушке и смотрит куда-то, в какое-то пространство неведомое. Кузнец Ермил сидел на пороге, праздно смотрел в пространство...

    Фразеологический словарь русского литературного языка

  • - нареч, кол-во синонимов: 2 без определенного направления в пустоту...

    Словарь синонимов

  • - сущ., кол-во синонимов: 1 пространство...

    Словарь синонимов

"МНОГОМЕРНОЕ ПРОСТРАНСТВО" в книгах

Пространство - друг, пространство - враг

Из книги Кто держит паузу автора Юрский Сергей Юрьевич

Пространство - друг, пространство - враг М. Чехов вспоминает: «Когда фигура Варламова или Давыдова появлялась на сцене, я, как и всякий зритель, вдруг каким-то непостижимым образом угадывал вперед всю жизнь, всю судьбу героя... Силой своего дарования они делали зрителя

Гл. 2. Многомерное пространство-время

Из книги Григорий Перельман и гипотеза Пуанкаре автора Арсенов Олег Орестович

Гл. 2. Многомерное пространство-время «Поэтому стандартная модель приводит к первичной особенности - Большому Взрыву. Этот вывод был назван Джоном Уилером "величайшим кризисом физики". В самом деле, в чем мог бы быть смысл такой особенности? Если проследить за историей

ЗРЕНИЕ. Взгляд на пространство и пространство взгляда

Из книги Книга японских обыкновений автора Ким Э Г

ЗРЕНИЕ. Взгляд на пространство и пространство взгляда Начнем наш осмотр японских достопримечательностей с японских черных глаз. Ведь именно с помощью зрения и получает человек свои главные представления о мире. Недаром, когда японцы говорят: «Пока глаза черны», это

Глава первая Пространство мира и пространство картины: космологическая модель мирового древа

Из книги Журнал «Байкал» 2010–01 автора Митыпов Владимир Гомбожапович

Глава первая Пространство мира и пространство картины: космологическая модель мирового древа Как универсальный знаковый комплекс концепция мирового древа известна почти всем народам Европы, Азии, а также некоторым народам Африки и индейцам северо-западного побережья

Многомерное решение проблем

Из книги Пора проснуться. Эффективные методы раскрытия потенциала сотрудников автора Клок Кеннет

Многомерное решение проблем Другой подход к решению проблемы заключается в ее рассмотрении в нескольких измерениях, каждое из которых обладает большей по сравнению с предыдущим степенью свободы. Например, можно принять за нулевой уровень решения проблемы топтание на

24. Пространство и время. Пространство и время как всеобщие формы существования материи. Принцип единства мира

Из книги Шпаргалки по философии автора Нюхтилин Виктор

24. Пространство и время. Пространство и время как всеобщие формы существования материи. Принцип единства мира Пространство - это некая материальная или логически мыслимая среда совместного существования материальных или мыслимых объектов.Логически мыслимое

Многомерное пространство

Из книги Большая Советская Энциклопедия (МН) автора БСЭ

Из книги AutoCAD 2009 для студента. Самоучитель автора Соколова Татьяна Юрьевна

Пространство модели и пространство листа

Из книги AutoCAD 2008 для студента: популярный самоучитель автора Соколова Татьяна Юрьевна

Пространство модели и пространство листа Пространство модели (Model Space) – это пространство AutoCAD, где формируются модели объектов как при двумерном, так и при трехмерном моделировании. О том, что в окне AutoCAD на текущий момент установлено пространство модели, говорят

Пространство модели и пространство листа

Из книги AutoCAD 2009. Учебный курс автора Соколова Татьяна Юрьевна

Пространство модели и пространство листа Пространство модели (Model Space) – это пространство AutoCAD, где формируются модели объектов как при двумерном, так и при трехмерном моделировании. О том, что в окне AutoCAD на текущий момент установлено пространство модели, говорят

Пространство модели и пространство листа

Из книги AutoCAD 2009. Начали! автора Соколова Татьяна Юрьевна

Пространство модели и пространство листа Пространство модели (Model Space) – это пространство AutoCAD, где формируются модели объектов как при двумерном, так и при трехмерном моделировании. О том, что в окне AutoCAD на текущий момент установлено пространство модели, говорят

Глава 4. МНОГОМЕРНОЕ УСТРОЙСТВО ЧЕЛОВЕКА

Из книги Секреты женской биолокации автора Исаакян Сюзанна Гарниковна

Глава 4. МНОГОМЕРНОЕ УСТРОЙСТВО ЧЕЛОВЕКА Древняя космическая модель человека – это 7 тел: Физическое, Эфирное и 5 «тонких тел» – Астральное, Душевное, Кармическое (Каузальное), Ментальное и

Мое «многомерное» развитие

Из книги Новые алгоритмы Многомерной медицины автора Автор неизвестен

Мое «многомерное» развитие Многомерной медициной (ММ) занимаюсь с 1 апреля 2006 года, 1840, время московское.Не удивляйтесь – веду дневник. Занимаюсь почти ежедневно, в среднем получается 8–12 часов в неделю. За прошедшее время составлены около трех тысяч принципиальных

Многомерное представление информации

Из книги Суперинтуиция для начинающих автора Теппервайн Курт

Многомерное представление информации Мы привычно доверяем своим чувствам, тому, что видим собственными глазами, что слышим своими ушами, ощупываем руками или воспринимаем обонянием. При этом мы большей частью ограничиваемся чувственным восприятием, наблюдая или слушая

2.2. Пространство решений - жизненное пространство

Из книги Око тайфуна автора Переслегин Сергей Борисович

2.2. Пространство решений - жизненное пространство Дело не только в убитых, хотя их смерть отравила коллективное подсознание. Дело еще и в наглядном уроке невозможности. Военная геометрия поставила предел, и его не смогли преодолеть. Я говорю не о линии фронта, не о пределе