Временная шкала истории. Геохронологическая шкала

Стратиграфическая (г еохронологическая) шкала – ш кала геологического времени, этапы которой выделены палеонтологией по развитию жизни на Земле.

Два названия этой шкалы несут разный смысл: стратиграфическая шкала служит для описания последовательности и взаимоотношений горных пород, слагающих земную кору, а геохронологическая – для описания геологического времени. Отличаются эти шкалы в терминологии, ознакомиться с отличиями можно в таблице ниже:

Общие стратиграфические

подразделения (стратоны)

Подразделения

геохронологической шкалы

Акротема Акрон
Эонотема Эон
Эратема Эра
Система Период
Отдел Эпоха
Ярус Век

Таким образом, мы можем сказать, что, например, толща известняков относится к меловой системе , но известняки образовались в меловой период .

Системы, отделы, ярусы могут быть верхними или нижними, а периоды, эпохи и века – ранними или поздними.

Путать эти термины нельзя.

Фанерозой

Фанерозойский эон включает в себя три эры, названия которых должны быть известны многим: палеозой (эра древней жизни), мезозой (эра средней жизни) и кайнозой (эра новой жизни). Эры в свою очередь делятся на периоды. Палеозойские: кембрий, ордовик, силур, девон, карбон, пермь; мезозойские: триас, юра, мел; кайнозойские: палеоген, неоген и четвертичный. Каждый период имеет своё буквенное обозначение и свой цвет для обозначения на геологических картах.

Запомнить порядок периодов довольно просто с помощью мнемонического приёма. Первая буква каждого слова в приведённых ниже двух предложениях соответствует первой букве периода:

К аждый О бразованный С тудент Д олжен К урить П апиросы. Т ы, Ю рчик, М ал, П ойди Н айди Ч инарик.

Символ Цвет
Кембрий Голубовато-зелёный
Ордовик O Оливковый
Силур S Серо-зелёный
Девон D Коричневый
Карбон C Серый
Пермь P Жёлто-коричневый
Триас T Фиолетовый
Юра J Голубой
Мел K Светло-зелёный
Палеоген P * Оранжевый
Неоген N Жёлтый
Четвертичный Q Желтовато-серый

*символ палеогена может не отображаться, т.к. содержится не во всех шрифтах: это символ рубля (Р с горизонтальной чертой)

Докембрий

Архейский и протерозойский акроны являются более древними подразделениями, кроме того, на их долю приходится большая часть существования нашей планеты. Если фанерозой длился около 530 млн лет, то один только протерозой – больше полутора миллиардов лет.

Геохронологическая шкала

КЛАРКИ

Рельеф

Географический полюс

[править]

У этого термина существуют и другие значения, см. Полюс.

Географический полюс - точка, в которой ось вращения Земли пересекается с поверхностью Земли. Имеется два географических полюса: Северный полюс - находится в Арктике (центральная часть Северного Ледовитого океана) и Южный полюс - находится в Антарктиде.

В географическом полюсе сходятся всœе меридианы, в связи с этим географический полюс не имеет долготы. Северный полюс имеет широту +90 градусов, а южный полюс имеет широту −90 градусов.

На географических полюсах отсутствуют стороны света. На полюсах нет смены дня и ночи, так как полюса не участвуют в суточном вращении Земли.

На географическом полюсе угол подъёма Солнца не превышает 23,5°, из-за этого на полюсе очень низкая температура.

Положение географических полюсов условное, так как мгновенная ось вращения Земли перемещается. Из-за этого происходит движение географических полюсов.

[править]См. также

Магни́тный по́люс - условная точка на земной поверхности, в которой магнитное поле Земли направлено строго под углом 90° к поверхности.

[править]

Материал из Википедии - свободной энциклопедии

У этого термина существуют и другие значения, см. Рельеф (значения).

Макет с рельефом местности

Рельеф (фр.
Размещено на реф.рф
relief , от лат. relevo - поднимаю) - совокупность неровностей суши, дна океанов и морей, разнообразных по очертаниям, размерам, происхождению, возрасту и истории развития. Слагается из положительных (выпуклых) и отрицательных (вогнутых) форм.

Рельеф образуется главным образом в результате длительного одновременного воздействия на земную поверхность эндогенных (внутренних) и экзогенных (внешних) процессов. Рельеф изучает геоморфология.

Основными формами рельефа являются гора, котловина, хребет, лощина.

На крупномасштабных топографических и спортивных картах рельеф изображают изогипсами - горизонталями, числовыми отметками и дополнительными условными знаками. На мелкомасштабных топографических и физических картах рельеф обозначается цветом (гипсометрической окраской с четкими или размытыми ступенями) и отмывкой.

Денудационные равнины возникают на месте разрушенных гор.
Размещено на реф.рф
Аккумулятивные равнины образуются при длительном накоплении толщ рыхлых осадочных пород на месте обширных опусканий земной поверхности.

Складчатые горы - поднятия земной поверхности, возникающие в подвижных зонах земной коры, чаще всœего на краях литосферных плит. Глыбовые горы возникают в результате образования горстов, грабенов и перемещения участков земной коры по сбросам. Складчато-глыбовые горы появились на месте участков земной коры, перетерпевших в прошлом горообразование, превращение в денудационную равнину и повторное горообразование. Вулканическое горы образуются при извержении вулканов.

Гипсографическая кривая (от др.-греч. ὕψος - ʼʼвысотаʼʼ и γράφω ʼʼпишуʼʼ, также гипсометрическая кривая ) - эмпирическая интегральная функция распределœения глубин океана и высот земной поверхности. Обычно изображается на координатной плоскости, где по вертикальной оси откладывается высота рельефа, а по горизонтальной - доля поверхности, высота рельефа которой больше указанной. Часть кривой, расположенной ниже уровня моря, принято называть батиграфической кривой .

Гипсографическая кривая впервые была построена в 1883 году А. Лаппараном и уточнена в 1933 году Э. Коссина. Уточнения для батиграфической кривой сделаны в 1959 году В. Н. Степановым .

Гипсографическая кривая рельефа Земли имеет два пологих участка: один из них на уровне моря, другой - на глубинœе 4-5 км. Эти участки соответствуют наличию двух пород различной плотности. Пологий участок на уровне моря соответствует лёгким породам, состоящим из гранита (плотность 2800 кг/м³), нижний участок - тяжёлым продам, сложенным базальтами (3300 кг/м³). В отличие от Земли, гипсографическая кривая Луны не содержит пологих участков, что свидетельствует об отсутствии дифференциации пород .

КЛАРКИ элементов, числа, выражающие среднее содержание хим. элементов в земной коре, гидросфере, Земле в целом, космич. телах и др.
Размещено на реф.рф
геохим. или космохим. системах. Различают весовые (в %, в г /т или в г/г ) и атомные (в % от числа атомов) кларки. Обобщение данных по хим. составу различных горных пород, слагающих земную кору, с учётом их распространения до глубин 16 км впервые было сделано амер.
Размещено на реф.рф
учёным Ф. У. Кларком (1889). Полученные им цифры процентного содержания хим. Элементов в составе земной коры, впоследствии несколько уточнённые А. Е. Ферсманом, по предложению последнего, были названы числами Кларка, или к л а р к а м и. Средние содержания элементов в земной коре, в совр.
Размещено на реф.рф
понимании её как верхнего слоя планеты выше границы Мохоровичича (см. Мохоровичича поверхность), вычислены А. П. Виноградовым (1962), амер.
Размещено на реф.рф
учёным С. Р. Тейлором (1964), нем. - К. Г. Ведеполем (1967) (см. табл.). Преобладают элементы малых порядковых номеров: 15 наиболее распространённых элементов, кларки к-рых выше 100 г/т , обладают порядковыми номерами до 26 (Fe). Элементы с чётными порядковыми номерами слагают 87% массы земной коры, а с нечётными - только 13%. Средний хим. состав Земли в целом рассчитывался на основании данных о содержании элементов в метеоритах (см.Геохимия).

Так как К. элементов служат эталоном сравнения пониженных или повышенных концентраций хим. элементов в месторождениях полезных ископаемых, горных породах или целых регионах, знание их важно при поисках и пром. оценке месторождений полезных ископаемых; они позволяют также судить о нарушении обычных отношений между сходными элементами (хлор- бром, ниобий - тантал) и тем самым указывают на различные фпзико-хим. факторы, нарушившие эти равновесные отношения.

В процессах миграции элементов К. Элементов являются количеств, показателœем их концентрации.

В составе земной коры - множество элементов, но основную её часть составляют кислород и кремний.

Средние значения химических элементов в земной коре носят название кларков. Название было введено советским геохимиком А.Е. Ферсманом в честь американского геохимика Франка Уиглсуорта Кларка, который проанализировав результаты анализа тысяч образцов пород рассчитал средний состав земной коры. Вычисленный Кларком состав земной коры был близок к граниту - распространённой магматической горной породе в континœентальной земной коре Земли.

После Кларка определœением среднего состава земной коры занялся норвежский геохимик Виктор Гольдшмидт. Гольдшмидт сделал предположение, что ледник, двигаясь по континœентальной коре соскребает и смешивает выходящие на поверхность горные породы. По этой причине ледниковые отложения или морены отражают средний состав земной коры. Проанализировав состав ленточных глин, отложившихся на дне Балтийского моря во время последнего оледенения, учёный получил состав земной коры, который очень походил на состав земной коры вычисленный Кларком.

В последствии состав земной коры изучался советскими геохимиками Александром Виноградовым, Александром Роновым, Алексеем Ярошевским, немецким учёным Г. Ведеполем.

После анализа всœех научных работ было выяснено, что наиболее распространенным элементом в составе земной коре является кислород. Его кларк - 47%. Следующий аосле кислорода по распространенности химический элемент - кремний с кларком 29,5%. Остальными распространенными элементами являются: алюминий (кларк 8,05), желœезо (4,65), кальций (2,96), натрий (2,5), калий (2,5), магний (1,87) и титан (0,45). В совокупности на эти элементы составляют 99,48% от всœего состава земной коры; они образуют многочисленные химические соединœения. Кларки остальных 80 элементов составляют всœего 0,01-0,0001 и в связи с этим такие элементы называются редкими. В случае если же элемент не только редкий, но и обладает слабой способностью к концентрированию, его называют редким рассеянным.

В геохимии также употребляют термин ʼʼмикроэлементыʼʼ, под которым понимают элементы, кларки которых в данной системе менее 0,01. А.Е. Ферсман построил график зависимости атомных кларков для чётных и нечётных элементов периодической системы. Выявилось, что с усложнением строения атомного ядра кларки уменьшаются. Но линии, построенные Ферсманом, оказались не монотонными, а ломанными. Ферсман прочертил гипотетическую среднюю линию: элементы, расположенные выше этой линии, он назвал избыточными (О, Si, Са, Fe, Ва, РЬ и т.д.), ниже - дефицитными (Ar, Не, Ne, Sc, Со, Re и т.д.).

Ознакомиться с распространением важнейших химических элементов в земной коре можно с помощью этой таблицы:

Возраст Земли - время, ĸᴏᴛᴏᴩᴏᴇ прошло с момента образования Земли как самостоятельной планеты. Согласно современным научным данным возраст Земли составляет 4,54 миллиардов лет (4,54·10 9 лет ± 1 %). Эти данные базируются на радиоизотопной датировке не только земных образцов, но и метеоритного вещества. Οʜᴎ получены в первую очередь с помощью свинœец-свинцового метода. Эта цифра соответствует возрасту старейших земных и лунных образцов.

После научной революции и развития методов радиоизотопной датировки оказалось, что многие образцы минœералов имеют возраст более миллиарда лет. Старейшие из найденных на данный момент - мелкие кристаллыциркона из Джек Хилз в Западной Австралии - их возраст не менее 4404 миллионов лет. На базе сравнения массы и светимости Солнца и других звезд был сделан вывод, что Солнечная система не должна быть намного старше этих кристаллов. Конкреции, богатые кальцием и алюминием, встречающиеся в метеоритах - самые старые известные образцы, которые сформировались в пределах Солнечной системы: их возраст равен 4567 миллионов лет, что даёт возможность установить возраст Солнечной системы и верхнюю границу возраста Земли. Существует гипотеза, что аккреция Земли началась вскоре после образования кальций-алюминиевых конкреций и метеоритов. Поскольку точное время аккреции Земли неизвестно и различные модели дают от нескольких миллионов до 100 миллионов лет, точный возраст Земли трудно определить. Вместе с тем, трудно определить абсолютно точный возраст старейших пород, выходящих на поверхность Земли, поскольку они составлены из минœералов разного возраста.

Время в геологии

Определœение возраста горных пород основано на изучении последовательности образования напластований в земной коре. На основании данных об органических остатках, составе, строении и расположении пластов относительно друг друга в вертикальном и горизонтальном направлениях разработана геохронологическая шкала, отражающая геологическую историю Земли. В соответствии с геохронологической шкалой создана стратиграфическая шкала, в которой указываются комплексы горных пород, образовавшиеся в геологические отрезки времени. Ниже приведено соотношение базовых геохронологических и стратиграфических подразделœений, ᴛ.ᴇ. интервалов геологического времени и комплексов пород, образовавшихся в соответствующий интервал времени. Интервал геологического времени: Эра-Период-Эпоха-Век Комплекс пород, образовавшихся в течение этого интервала: Группа-Система-Отдел-Ярус Так, в течение эры сформировался комплекс горных пород, называемый группой, в течение периода - комплекс горных пород, называемый системой, и т.д. В геохронологической шкале (табл. 2.1.1.3.1) выделяют пять крупнейших интервалов геологического времени - эр, каждая из которых делится на периоды, а каждый период - на эпохи. Составляют геохронологические шкалы и с более дробными хронологическими интервалами: эпохи делят на века. Подразделœения стратиграфической шкалы обычно имеют те же названия. К примеру, кайнозойской эре соответствует кайнозойская группа пород, а в течение неогенового периода формировались комплексы пород неогеновой системы и т. д. При этом названия эпох часто не совпадают с названием отделов.
Эон Эра Период Эпоха Длительность (возраст от начала эры), млн. лет
Фанерозой Кайнозойская KZ Четвертичный Q 1,8
Неогеновый N ПлиоценN 2 Миоцен N 1 (23±1)
Палеогеновый P ОлигоценP 3 Эоцен P 2 ПалеоценP 1 (65±3)
Мезозойская MZ Меловой K Поздняя К 2 Ранняя К 1 (135±5)
Юрский J Поздняя J 3 Средняя J 2 Ранняя J 1 55-60 (190±5)
Триасовый T Поздняя T 3 Средняя T 2 Ранняя T 1 40-45 (230±10)
Палеозойская PZ Поздняя PZ 2 Пермский P Поздняя P 2 Ранняя P 1 50-60 (285±15)
Каменноугольный C Поздняя C 3 Средняя C 2 Ранняя C 1 50-60 (350±10)
Девонский D Поздняя D 3 Средняя D 2 Ранняя D 1 (405±10)
Ранняя PZ 1 Силурийский S Поздняя S 2 Ранняя S 1 25-30 (435±15)
Ордовикский O ПоздняяO 3 СредняяO 2 Ранняя O 1 45-50 (480±15)
Кембрийский Є Поздняя Є 3 Средняя Є 2 Ранняя Є 1 90-100 (570±20)
Протерозой PR Венд (~680)
(2600±100)
Архей AR (4600±200)

Определœение относительного возраста пород - это установление, какие породы образовались раньше, а какие – позже.Относительный возраст осадочных ᴦ.п. устанавливается с помощью геолого-стратиграфических (стратиграфического, литологического, тектонического, геофизических) и биостратиграфических методов.Стратиграфический метод основан на том, что возраст слоя при нормальном залегании определяется – нижелœежащие их слои являются более древними, а вышелœежащие более молодыми. Этот метод должна быть использован и при складчатом залегании слоев. Не должна быть использован при опрокинутых складках.Литологический метод основан на изучении и сравнении состава пород в разных обнажениях (естественных- в склонах рек, озер, морей, искусственных – карьерах, котлованах и т.д.). На ограниченной по площади территории, отложения одинакового вещественного состава (ᴛ.ᴇ. состоят из одинаковых минœералов и горных пород) , бывают одновозрастными. При сопоставлении разрезов различных обнажений используют маркирующие горизонты, которые отчетливо выделяются среди других пород и стратиграфиески выдержаны на большой площади.Тектонический метод основан на том, что мощные процессы деформации ᴦ.п. проявляются (как правило) одновременно на больших территориях, в связи с этим одновозрастные толщи имеют примерно одинаковую степень дислоцированности (смещения). В истории Земли осадконакопления периодически сменялись складчатостью и горообразованием.Возникшие горные области разрушались, а на выровненную территорию вновь наступало море, на дне которого уже несогласно накапливались толщи новых осадочных ᴦ.п. в данном случае различные несогласия служат границами, подразделяющими разрезы на отдельные толщи.Геофизические методы основаны на использовании физических характеристик отложений (удельного сопротивления, природной радиоактивности, остаточной намагниченности ᴦ.п. и т.д.) при их расчленении на слои и сопоставлении.Расчленение пород в буровых скважинах на основании измерений удельного сопротивления ᴦ.п. и пористости принято называть электрокаротаж, на основании измерений их радиоактивности – гамма-каротаж.Изучение остаточной намагниченности ᴦ.п. называют палеомагнитным методом; он основан на том, что магнитные минœералы, выпадая в осадок, распластаются в соответствии с магнитным полем Земли той эпохи которая, как известно, постоянно менялась в течении геологического времени. Эта ориентировка сохраняется постоянно, в случае если порода не подвергается нагреванию выше 500С (т.н. точка Кюри) или интенсивной деформации и перекристаллизации. Следовательно, в различных слоях направление магнитного поля будет различным. Палеомагнитизм позволяет т.о. сопоставлять отложения значительно удаленные друг от друга (западное побережье Африки и восточное побережье Латинской Америки).Биостратиграфические или палеонтологические методы состоят в определœении возраста ᴦ.п. с помощью изучения ископаемых организмов (подробно палеонтологические методы будут рассмотрены в следующей лекции).Определœение относительного возраста магм. И метам. Г.п. (всœе выше охарактер.
Размещено на реф.рф
Методы – для определœения возраста осадочных пород) осложнено отсутствием палеонтологических остатков. Возраст эффузивных пород, залегающих совместно с осадочными устанавливается по соотношению к осадочным породам.Относительный возраст интрузивных пород определяется по соотношению магматических пород и вмещающих осадочных пород, возраст которых установлен.Определœение относительного возраста метармофических пород аналогично определœению относительного возраста магматических пород.

[править]

Материал из Википедии - свободной энциклопедии

Геохронологическая шкала
Эон Эра Период
Ф а н е р о з о й Кайнозой Четвертичный
Неоген
Палеоген
Мезозой Мел
Юра
Триас
Палеозой Пермь
Карбон
Девон
Силур
Ордовик
Кембрий
Д о к е м б р и й П р о т е р о з о й Нео- протерозой Эдиакарий
Криогений
Тоний
Мезо- протерозой Стений
Эктазий
Калимий
Палео- протерозой Статерий
Орозирий
Риасий
Сидерий
А р х е й Неоархей
Мезоархей
Палеоархей
Эоархей
Катархей
Источник

Геохронологи́ческая шкала́ - геологическая временная шкала истории Земли, применяемая в геологии и палеонтологии, своеобразный календарь для промежутков времени в сотни тысяч и миллионы лет.

Согласно современным общепринятым представлениям возраст Земли оценивается в 4,5-4,6 млрд лет. На поверхности Земли не обнаружены горные породы или минœералы, которые могли бы быть свидетелями образования планеты. Максимальный возраст Земли ограничивается возрастом самых ранних твёрдых образований в Солнечной системе - тугоплавких включений, богатых кальцием и алюминием (CAI) из углистых хондритов. Возраст CAI из метеорита Allende по результатам современных исследований U-Pb изотопным методом составляет 4568,5±0,5 млн. лет . На сегодня это лучшая оценка возраста Солнечной системы. Время формирования Земли как планеты должна быть позже этой даты на миллионы и даже многие десятки миллионов лет.

Последующее время в истории Земли было разделœено на различные временные интервалы по важнейшим событиям, которые тогда происходили.

Граница между эрами фанерозоя проходит по крупнейшим эволюционным событиям - глобальным вымираниям. Палеозой отделён от мезозоя крупнейшим за историю Земли пермо-триасовым вымиранием видов. Мезозой отделён от кайнозоя мел-палеогеновым вымиранием.

Геохронологическая шкала, изображённая в виде спирали

[править]История создания шкалы

Во второй половинœе XIX века на II-VIII сессиях Международного геологического конгресса (МГК) в 1881-1900 гᴦ. были приняты иерархия и номенклатура большинства современных геохронологических подразделœений. В последующем Международная геохронологическая (стратиграфическая) шкала постоянно уточнялась.

Конкретные названия периодам давали по разным признакам. Чаще всœего использовали географические названия. Так, название кембрийского периода происходит от лат. Cambria - названия Уэльса, когда он был в составе Римской империи, девонского - отграфства Девоншир в Англии, пермского - от ᴦ. Перми, юрского - от гор Юра́ в Европе. В честь древних племён названы вендский(в́енды - нем. название славянского народа лужицких сорбов), ордовикский и силурийский (племена кельтов ордо́вики и силу́ры) периоды. Реже использовались названия, связанные с составом пород. Каменноугольный период назван из-за большого количества угольных пластов, а меловой - из-за широкого распространения писчего мела.

[править]Принцип построения шкалы

Геохронологическая шкала создавалась для определœения относительного геологического возраста пород. Абсолютный возраст, измеряемый в годах, имеет для геологов второстепенное значение.

Время существования Земли разделœено на два главных интервала (эона): Фанерозой и Докембрий (Криптозой) по появлению в осадочных породах ископаемых остатков. Криптозой - время скрытой жизни, в нём существовали только мягкотелые организмы, не оставляющие следов в осадочных породах. Фанерозой начался с появлением на границе Эдиакария (Венд) и Кембрия множества видов моллюсков и других организмов, позволяющих палеонтологии расчленять толщи по находкам ископаемой флоры и фауны.

Другое крупное делœение геохронологической шкалы имеет своим истоком самые первые попытки разделить историю земли на крупнейшие временны́е интервалы. Тогда вся история была разделœена на четыре периода: первичный, который эквивалентен докембрию, вторичный - палеозой и мезозой, третичный - весь кайнозой без последнего четвертичного периода. Четвертичный период занимает особое положение. Это самый короткий период, но в нём произошло множество событий, следы которых сохранились лучше других.

Эон (эонотема) Эра (эратема) Период (система) Эпоха (отдел) Начало, лет назад Основные события
Фанерозой Кайнозой Четвертичный (антропогеновый) Голоцен 11,7 тыс. Конец Ледникового Периода. Возникновение цивилизаций
Плейстоцен 2,588 млн Вымирание многих крупных млекопитающих. Появление современного человека
Неогеновый Плиоцен 5,33 млн
Миоцен 23,0 млн
Палеогеновый Олигоцен 33,9 ± 0,1 млн Появление первых человекообразных обезьян.
Эоцен 55,8 ± 0,2 млн Появление первых ʼʼсовременныхʼʼ млекопитающих.
Палеоцен 65,5 ± 0,3 млн
Мезозой Меловой 145,5 ± 0,4 млн Первые плацентарные млекопитающие. Вымирание динозавров.
Юрский 199,6 ± 0,6 млн Появление сумчатых млекопитающих и первых птиц. Расцвет динозавров.
Триасовый 251,0 ± 0,4 млн Первые динозавры и яйцекладущие млекопитающие.
Палеозой Пермский 299,0 ± 0,8 млн Вымерло около 95 % всœех существовавших видов (Массовое пермское вымирание).
Каменноугольный 359,2 ± 2,8 млн Появление деревьев и пресмыкающихся.
Девонский 416,0 ± 2,5 млн Появление земноводных и споровых растений.
Силурийский 443,7 ± 1,5 млн Выход жизни на сушу: скорпионы; появление челюстноротых
Ордовикский 488,3 ± 1,7 млн Ракоскорпионы, первые сосудистые растения.
Кембрийский 542,0 ± 1,0 млн Появление большого количества новых групп организмов (ʼʼКембрийский взрывʼʼ).
Докембрий Протерозой Неопротерозой Эдиакарий ~635 млн Первые многоклеточные животные.
Криогений 850 млн Одно из самых масштабных оледенений Земли
Тоний 1,0 млрд Начало распада суперконтинœента Родиния
Мезопротерозой Стений 1,2 млрд Суперконтинœент Родиния, суперокеан Мировия
Эктазий 1,4 млрд Первые многоклеточные растения (красные водоросли)
Калимий 1,6 млрд
Палеопротерозой Статерий 1,8 млрд
Орозирий 2,05 млрд
Риасий 2,3 млрд
Сидерий 2,5 млрд Кислородная катастрофа
Архей Неоархей 2,8 млрд
Мезоархей 3,2 млрд
Палеоархей 3,6 млрд
Эоархей 4 млрд Появление примитивных одноклеточных организмов
Катархей ~4,6 млрд ~4,6 млрд лет назад - формирование Земли.

[править]Масштабные диаграммы геохронологической шкалы

Представлены три хронограммы, отражающие разные этапы истории земли в различном масштабе.

1. Верхняя диаграмма охватывает всю историю земли;

2. Вторая - фанерозой, время массового появления разнообразных форм жизни;

3. Нижняя - кайнозой, период времени после вымирания динозавров.

Миллионов лет

Геохронологическая шкала - понятие и виды. Классификация и особенности категории "Геохронологическая шкала" 2017, 2018.

Вот уже четыре с половиной миллиарда лет Земля вращается вокруг Солнца. Разумеется, наша планета не всегда была такой, как сейчас. Лицо Земли, как лицо живого существа, с возрастом стареет. Меняется состав океанов и атмосферы, вырастают и разрушаются горы, зарождаются и высыхают моря, реки прокладывают себе новый путь и прорезают в древних горах глубокие каньоны. И под воздействием этих глобальных перемен жизнь на Земле тоже меняется. Какие бы события ни происходили на Земле, растения, животные и микроорганизмы ухитрялись приспосабливаться к новым условиям. Откуда же мы знаем об этом? История - наука о человечестве. А о возникновении Земли и развитии жизни на ней рассказывают геология и палеонтология (наука об ископаемых). Люди занимаются палеонтологией, чтобы ответить на один из основополагающих вопросов: как возникло то, что мы видим вокруг себя? Какой путь прошла наша планета и как развивалась жизнь на ней? Как все пришло к современному состоянию? Повсюду вокруг мы видим следы истории Земли. Вот горный хребет, который был когда-то дном океана, - поднявшийся в результате тектонических процессов, изъеденный водой и ветром, покореженный ледниками и разрушенный землетрясениями. Следы эволюции можно найти и в человеческом организме. Многие внутренние органы (в первую очередь почки и гормональная система) создают внутри нашего тела жидкую солоноватую среду, напоминая о том, что когда-то наши предки обитали в морях. В предплечьях и голенях имеется по две кости - давным-давно, в те времена, когда наши предки учились передвигаться по суше, такое строение помогало вращать конечностями. У зародыша человека на внутриутробных стадиях развития появляются, а затем исчезают жабры. Эти доказательства происхождения человека поражают и палеонтологов, и нас с вами. В «Атласе динозавров» последовательно изложены все изменения, произошедшие за долгую историю Земли. Книга начинается с серии великолепных карт, составленных на основе кропотливых геологических исследований. Они показывают, как перемещались континенты за последние 620 миллионов лет. Затем каждая карта дополняется рассказом об ископаемых, дающих представление о том, какие растения и животные обитали в эту эпоху в море и на суше. В последней, информационной части понятным языком излагаются сложные идеи и принципы, на которых строится современная геология и палеонтология. Стоит заметить, что научное изучение Земли в современном смысле этого слова началось всего около двухсот лет назад. В те годы существовало множество «теорий», которые пытались объяснить, почему камни бывают такими разными по форме и составу. Лишь со временем ученые признали, что ископаемые окаменелости - остатки органической жизни, а не творения человеческих рук или шутка природы. А после того, как английский ученый Уильям Смит создал науку стратиграфию, стало ясно, что окаменелые морские раковины, которые иногда находят в горах, не были занесены туда волнами Всемирного потопа, как считалось прежде. Эти находки объясняются системой геологических формаций - пластов, из которых состоят горные породы во всем мире. Затем перед учеными встала другая проблема: как определить возраст горных пород? Очевидно, что породы, находящиеся на глубине, древнее верхних, но практически во всех регионах мира представлены лишь отдельные фрагменты полной последовательности. И только после открытия радиоактивности был создан метод, основанный на измерении периода распада изотопов. Этот метод позволил определить возраст горных пород с точностью до миллионов лет, хотя Дарвин и многие геологи делали довольно точные расчеты еще десятилетиями раньше.

И наконец, ученым предстояло решить еще одну задачу: каким образом современные материки заняли свои нынешние места? На этот вопрос ответила теория дрейфа континентов. Вначале она была высказана как смелое предположение, затем оформилась в гипотезу, а в наши дни на ее основе была разработана теория тектоники литосферных плит - основополагающая концепция современной геологии. Благодаря ей мы знаем о движении континентов, о том, как перемещаются и сталкиваются друг с другом материковые плиты, возникают и снова исчезают океаны, а также понимаем, что землетрясения, извержения вулканов, «горячие зоны» земной коры и горообразование представляют собой проявления одного и того же процесса - тектоники. Эта теория помогла проверить многие существовавшие ранее идеи о возникновении и последующем изменении атмосферы, океанов, самой Земли и жизни на ней.


Q

Геохронологическая шкала представлена последовательностью истории Земли, подразделяющей ее на систему временных промежутков. Она отражает относительный возраст слоев осадочных пород, определенный на основе их взаимного расположения и наличия органических остатков.

История создания

Геохронологическая шкала была составлена и утверждена в 1881 г. на Международном геологическом конгрессе. Первоначально она представляла собой последовательность разделенных на эпохи периодов. Последние были объединены в эры. То есть исходная шкала включала три подразделения. Позже была введена четвертая, более крупная категория — эон. В 2004 г. Международным союзом геологических наук была утверждена разработанная Международной комиссией по стратиграфии.

В России геохронологическую шкалу, совмещенную с стратиграфической, утверждили в конце XX в. (1992 г.). При этом добавили еще более крупное подразделение — акроны.

Основные принципы

Геохронологическая шкала основана на расчленении толщи осадочных пород либо связанных с ними массивов магматических по относительному возрасту.

Его определение относится к задачам геохронологии. Для данной цели применяются методы палеонтологии и стратиграфии.

Применение

Использование геохронологической шкалы определяется тем, что она связывает геологические события в истории планеты. Ввиду этого она обширно применяется в науках геологического цикла. К тому же стратиграфическая шкала шкала является основой для составления геологических карт.

Помимо этого, геохронологическая шкала имеет большое практическое значение. Так, она используется при регионально-геологических исследованиях, направленных на выяснение тектонических особенностей территории, определение направления поисков и разведки полезных ископаемых, особенно приуроченных к пластовым месторождениям, соответствующих конкретным стратиграфическим уровням. Геологические карты, создаваемые на основе геохронологической шкалы, используются при проведении инженерно-геологических работ, экологических исследований и т. д.

Накопленные материалы о геологическом строении земной коры и развитии жизни позволило разбить ее геологическую историю на шесть эр и составить шкалу геологического времени – геохронологическую шкалу.

Каждая эра делится на периоды, период на эпохи, эпохи на века.

Архейская эра – эра начала жизни

Протерозойская эра – эра первичной жизни

Рифейская – эра ранней жизни

Палеозойская эра древней жизни

Мезозойская – эра средней жизни

Кайнозойская – эра новейшей жизни.

Эры объединены в два эона Криптозой и Фанерозой.

Кроптозой объединяет Архейскую, Протерозойскую и Рифейскую эры. На этот эон приходится почти 4 млрд лет, или 5/6 всего геологического летоисчисления.

Это время зарождения жизни, появления примитивных одноклеточных организмов. Скелетная фауна полностью отсутствует.

Характеризуются активной тектонической деятельностью, в результате которой сформировалась геологическая структура земной коры, появлением воды и первых простейших форм жизни, накоплением первых мощных толщ осадочных пород. Сначала образовались платформы северного полушария и Австралийская, позднее Индостанская, Южно-Американская, Африканская и Антарктическая. В это же время оформились первые геосинклинали (складчатые горы).

Геологические образования этих эр представлены магматическими, древними осадочными и метаморфическими породами: кристаллическими сланцами, известняками, мраморами и др. В невыветреллом состоянии эти породы являются хорошим основанием и хорошими строительными материалами. Они слагают кристаллический фундамент Русской, Западно-Сибирской и др. равнин, выходят на поверхность в нашей стране южнее Воронежа, в Карелии, Мурманской области, в Восточной Сибири, на Урале, в Средней Азии и на Алтае.

Другие эры – плеозойская, мезозойская и кайнозойская – объединены в фанерозой (приблизительно 570 млн лет). Фаенерозой –важнейший этап геологической истории Земли, для которого характерны возникновение и широкое развитите скелетных организмов, расцвет органического мира и появление человека.

Палеозойская эра –Pzначалась примерно 525-570 млн. лет назад и длилась около 340 млн. лет. Палеозойская эра делится на шесть периодов: Кембрийский, Ордовикский, Силурийский, Девонский, Каменноугольный и Пермский.В случае необходимости в стандартную стратиграфическую шкалу вводились изменения, отражающие региональную специфику. Например, в Европе выделяется каменноугольный период, а в США ему соответствуют два – миссисипский и пенсильванский.

Палеозойская эра отличается в основном очень теплым и влажным субтропическим климатом, что привело к образованию многих пород органогенного происхождения. В этот период произошли две главнейшие фазы горообразования, сопровождавшиеся интенсивным смятием горных пород. Первая, каледонская фаза произошла на территории Шотландии, Западной Скандинавии, Гренландии, на территории России это район Забайкалья. Во время второй, герцинской фазы образовались Уральские горы, Тянь-Шань, Алтай и др. В эпоху скаладчатости тропический климат сменился резким похолоданием, а в эпоху герцинской фазы даже происходило оледенение.

В палеозойскую эру в морях образовались известняки, мергели, доломиты, на континентах – глины, пески и песчаники. В последние периоды палеозоя – каменноугольный и пермский – образовались мощные залежи каменного угля, известняки, песчаники, сланцы, а также химические осадочные породы – гипс, ангидрит, каменная соль. Породы, образовавшиеся на протяжении этой эры, содержат много остатков фауны и флоры. Формы отличались примитивностью и были весьма далеки от современных, это споровые растения и беспозвоночные животные, и впоследствии вымершие позвоночные.

Большинство пород палеозойской эры могут служить надежным основанием и использоваться в качестве строительных материалов.

Мезозойская эра Mz(эра средней жизни) началась 190 млн.лет назад и имела продолжительность около 125 млн.лет., делится на три периода Триасовый, Юрский и Меловой. Эра отличается сравнительно теплым однообразным климатом и тектоническим покоем. Лишь в Юрском периоде имела место киммерийская фаза горообразования, в результате которой началось образование Кавказских и Крымских гор. В это же время наблюдается континентальная климатическая обстановка, при которой образовались угли и глины.

В период мезозоя морские и континентальные отложения получили одинаковое распространение. В пределах русской равнины образовались мощные отложения мела, известняков, глин. Возможности использования пород мезозойской эры в строительных целях такие же, как и в период палеозоя.

На протяжении этой эры пресмыкающиеся имели весьма крупные размеры. Фауна и флора носили переходный характер – от древних форм органического мира к современным.

Кайнозойская эра Kz (эра новой жизни) началась 65 млн.лет назад. Растительный и животный мир приближается к современным формам, появляется человек. Эра делится на три периода Палеоген, Неоген и Четвертичный. Первые два периода обычно объединяются в один – третичный. Четвертичный период занимает всего 1 млн.лет и наиболее детально изучен. Именно в начале четвертичного периода появился человек.

Кайнозойская эра отличается разными, резко отличными друг от друга климатическими условиями. В период Палеогена климат был теплым, почти тропическим, в период Неогена наблюдается похолодание, которое в Четвертичном периоде перешло в ледниковую эпоху с периодическими оледенениями. Оледенения захватили огромную территорию северной части Европы и Азии.

В кайнозойскую эру очень интенсивно проявилась так называемая альпийская складчатость, образование которой началось еще в Юрском периоде. В третичном периоде закончилось образование Кавказских и Крымских гор. В это же время появились хребты Северной Африки, Альпы, Карпаты, горы Памира, Тянь-Шаня, Гималев, на Курильских островах, Сахалине Камчатке. Альпийская горообразовательная фаза еще не закончилась.

В третичном периоде образовались породы морского и континентального происхождения. Морские третичные отложения – глины, известняки-ракушечники и др. располагаются на побережье Черного моря и в других местах. Континентальные третичные отложения распространены повсеместно.

Породы четвертичного периода в подавляющем большинстве являются континентальными отложениями – рыхлыми горными породами и породами органогенного происхождения. Их обычно называют четвертичными породами или наносами в отличие от более ранних пород, которые называю коренными. Морские четвертичные отложения на территории России встречаются редко – на побережьях морей, к северу и востоку от Каспийского моря и на северном побережье Черного моря. По составу и свойствам эти отложения аналогичны третичным. Особую группу среди них составляют морские илы.

Мощность четвертичных отложений колеблется от нескольких сантиметров до десятков и сотен метров. Эти породы менее надежны в качестве оснований, чем корены. Свойства их изменяются в больших пределах и во многом зависят от генетических особенностей.

Коренные породы обычно представлены скальными и уплотненными песчаными и глинистыми породами, а среди четвертичных отложений преобладают рыхлые образования, слабосцементированные и связные.